@Chen Siyi
November 30, 2020

Note9 Fourier Series

Note9 Fourier Series

1 Inner Product Space

1. 1 Vector Space
2. 2 Inner Product Space
3. 3 Norm and Orthogonality
4. 4 Gram-Schmidt Orthonormalization
5. 5 Orthonormal Basis and Completeness

2 Approximation of "Vectors"
3 Fourier Analysis
3. 1 Basic Definitions about "Measure"
3. 2 The Fourier-Euler Basis
3. 2. 1 The Gibbs Phenomenon
3. 2. 2 Convergence of Fourier Series(Dirichlet's rule)
3. 3 The Fourier-Cosine Basis
3. 4 The Fourier-Sine Basis
3. 5 Complex Fourier-Euler Basis

4 Additional Practice

Let's look at the series methods from a wider view

1 Inner Product Space

1.1 Vector Space

A vector space is a set V, equipped with a rule for addition of any two vectors and for scalar multiplication of a vector by a scalar.

The addition + must satisfy the following axioms:

1. The set V is closed under addition: For any two vectors \mathbf{v} and \mathbf{w} of V, the sum $v+w$ is also in V.
2. Additionis commutative: For all $v, w \in V, v+w=w+v$.
3. Additionis associative: For all $v, w, y \in V,(v+w)+y=v+(w+y)$.
4. There is an additive identity: There exists $0_{V} \in V$ such that $v+0_{V}=0_{V}+v=v$ for all $v \in V$.
5. Every element has an additive inverse: for every $v \in V$, there exists a vector $y \in V$ such that $v+y=y+v=0_{V}$.

The scalar multiplication must satisfy the following axioms:

1. The set V is closed under scalar multiplication: For any vector \mathbf{v} in V and any scalar $\lambda \in \mathbb{R}$, the scalar multiple λv is also in V.
2. For two scalars $a, b \in \mathbb{R}$ or \mathbb{C}, we have $a(b v)=(a b) v$ for all vectors $v \in V$.
3. For $1 \in \mathbb{R}$, we have $1 v=v$ for all $v \in V$.

And finally, scalar multiplication distributes over addition:

1. $\lambda(v+w)=\lambda(v)+\lambda(w)$ fo rall $\mathrm{v}, \mathrm{W} \in \mathrm{V}$ and all $\lambda \in \mathbb{R}$ or \mathbb{C}.
2. $(a+b) v=a v+b v$ for all vectors $v \in V$ and all scalars $a, b \in \mathbb{R}$ or \mathbb{C}.

1.2 Inner Product Space

An inner product on a vector space V is a function

$$
V \times V \longrightarrow X
$$

X can be \mathbb{C} or \mathbb{R}. It must satisfy the following axioms:

1. Symmetry: $\langle f, g\rangle=\overline{\langle g, f\rangle}$ for all vectors $f, g \in V$;
2. Linearity in each factor: $\langle(f+g), h\rangle=\langle f, h\rangle+\langle g, h\rangle$ for all vectors $\mathrm{f}, \mathrm{g}, \mathrm{h} \in \mathrm{V}$ and $\langle\lambda f, g\rangle=\bar{\lambda}\langle f, g\rangle$ for all $\lambda \in \mathbb{C}$ and all $f, g \in V$.
3. Positive Definiteness: $\langle f, f\rangle \geq 0$ for all $f \in V$ with $\langle f, f\rangle=0$ if only if $f=0_{V}$.

A vector space V together with a choice of an inner product $(V,<\cdot, \cdot>)$ is called an inner product space.

As the most familiar example, $V=\mathbb{R}^{n},<\cdot, \cdot>=$.

1.3 Norm and Orthogonality

As soon as you define an inner product space, you can define norm and orthogonality
Norm of a vector \mathbf{v} is defined as

$$
\|\mathbf{v}\|=\sqrt{<\mathbf{v}, \mathbf{v}>}
$$

Which can be interpreted as the length defined under that inner product.
If the norm of $\mathbf{v}=1$, it is said to be normed or normalized.
And there are some fundamental theorems:

1. Pythagoras's Theorem:

Let $(V,\langle\cdot, \cdot\rangle)$ be an inner product space and $z=x+y \in V$, where $\langle x, y\rangle=0$. Then

$$
\|z\|^{2}=\|x\|^{2}+\|y\|^{2}
$$

2. Bessel's Inequality:

Let $(V,\langle\cdot, \cdot\rangle)$ be an inner product space and $\left\{e_{k}\right\}, k \in I \subset V, I \subset N$, be an orthonormal system in V. Then, for any $v \in V$,

$$
\sum_{k \in I}\left|\left\langle e_{k}, v\right\rangle\right|^{2} \leq\|v\|^{2}
$$

Two vectors \mathbf{v} and \mathbf{w} are orthogonal if

$$
<\mathbf{v}, \mathbf{w}>=0
$$

A system of vectors is an orthonormal system if all the vectors are normed, and are orthogonal to each other.

Let's see a really straight-forward way to find orthonormal systems!
As long as initially you have a system, just keep using orthogonal projection...

1.4 Gram-Schmidt Orthonormalization

Used to construct an orthonormal system from an existing system.

$$
\begin{gathered}
w_{1}:=\frac{v_{1}}{\left\|v_{1}\right\|} \\
w_{2}:=\frac{v_{2}-\left\langle w_{1}, v_{2}\right\rangle w_{1}}{\left\|v_{2}-\left\langle w_{1}, v_{2}\right\rangle w_{1}\right\|} \\
w_{k}:=\frac{v_{k}-\sum_{j=1}^{k-1}\left\langle w_{j}, v_{k}\right\rangle w_{j}}{\left\|v_{k}-\sum_{j=1}^{k-1}\left\langle w_{j}, v_{k}\right\rangle w_{j}\right\|}, \quad k=2, \ldots, n
\end{gathered}
$$

A Tricky Question:
By the way, does any system returns an orthonormal system of the same size as before?

1.5 Orthonormal Basis and Completeness

A system of vectors \mathcal{B} is an orthonormal basis of the vector space V if it is an orthonormal system, and $\boldsymbol{\operatorname { s p a n }}\{\mathcal{B}\}=V$.

A Tricky Question:
Can we always construct an orthonormal basis of V using the Gram-Schmidt
Orthonormalization approach from an existing basis of V ?
A theorem but not the definition: An inner product space $(V,<\cdot, \cdot>)$ is complete iff every maximal orthonormal system is an orthonormal basis.

Intuitively you can interpret as...
Any vector in V can be represented "precisely" (by linear combinitions) using the maximal orthonormal system as long as it is a basis.

Otherwise, even you have a maximal orthonormal system, this system can't be used to represent a vector precisely!

Multiple inner products can be defined for a vector space. For example, let $C([a, b])$ be the vector space:

$$
\begin{aligned}
\|f\|_{2} & :=\sqrt{\int_{a}^{b}|f(x)|^{2} d x} \\
\|f\|_{1} & :=\int_{a}^{b}|f(x)| d x \\
\|f\|_{\infty} & :=\sup _{x \in[a, b]}|f(x)|
\end{aligned}
$$

And a sequence is said to converge uniformly if $\left\|f_{n}\right\| \infty \rightarrow 0$, converge in the mean if $\left\|f_{n}\right\|_{1} \rightarrow 0$, and converge in the mean square if $\left\|f_{n}\right\|_{2} \rightarrow 0$.

But not all inner products make sure the inner product space is complete.
For example, $\left(C([a, b]),\|\cdot\|_{2}\right)$ is incomplete. $\left(L^{2}([a, b]),\|\cdot\|_{2}\right)$ is complete. Where,

$$
L^{2}([a, b]):=\left\{f:[a, b] \rightarrow \mathbb{C}: \int_{a}^{b}|f(x)|^{2} d x<\infty\right\}
$$

2 Approximation of "Vectors"

We now "say" the least square estimation is our best approximation.
Let $(V,\langle\cdot, \cdot\rangle)$ be an inner product space, $v \in V$ and $B=e_{k}$ an orthonormal system in V. We seek to approximate a vector v using a linear combination of the first $N \in \mathbb{N}$ elements (or as many as you can...) of the orthonormal system:

$$
v \approx \sum_{i=1}^{N} \lambda_{i} e_{i}, \quad \lambda_{1}, \ldots, \lambda_{N} \in \mathbb{F}
$$

Our approximation is the best when the following "error" is minimized:

$$
\left\|v-\sum_{i=1}^{N} \lambda_{i} e_{i}\right\|^{2}
$$

Fourier analysis is acting exactly in the same way to find an estimation...
And we choose the inner product space to be $\left(L^{2}([a, b]),\|\cdot\|_{2}\right)$. So you will notice, it's generally helpful to represent periodic functions.

Which region $[a, b]$ do we choose?
Which orthonormal system do we choose? Four different choices. Keep in mind it is affected by the region you choose.

A Tricky Question:

Recall The Method of Frobenius, do you find any similarities in the methods?

3 Fourier Analysis

3.1 Basic Definitions about "Measure"

- A set $\Omega \subset \mathbb{R}$ is said to have
- measure less than ε if...
- measure zero if...
- A property is said to hold almost everywhere (abbreviated by a.e.) on a subset $D \subset \mathbb{R}$ if...
- The set $\Omega=\mathbb{Q}$ of rational numbers has measure zero.
(One of) Our next goal:
Find some (Fourier)series f^{\prime} equal to a function f almost everywhere within certain region.

3.2 The Fourier-Euler Basis

If you choose $[a, b]=[-\pi, \pi]$, then since the below trigonometric polynomials forms an orthonormal basis of $L^{2}([-\pi, \pi])$, we can choose it as the Fourier-Euler Basis.

$$
\mathscr{B}_{\mathcal{G}}=\left\{\frac{1}{\sqrt{2 \pi}}, \frac{1}{\sqrt{\pi}} \cos (n x), \frac{1}{\sqrt{\pi}} \sin (n x)\right\}_{n=1}^{\infty}
$$

1. You can just use the first several terms to form a Fourier-Euler expansion of any $f \in L^{2}([-\pi, \pi])$ by projecting onto the first sevral vectors in this basis.
2. You can also form a Fourier Series f^{\prime} which is a linear combination of "every" vectors in the basis, and equals to $f \in L^{2}([-\pi, \pi])$ almost every where. f^{\prime} is gained by projecting onto each vector in this basis.

If you choose $[a, b]=[0, L]$, then the Fourier-Euler Basis can be

$$
\mathscr{B}_{1}:=\left\{\frac{1}{\sqrt{L}}, \sqrt{\frac{2}{L}} \cos \left(\frac{2 \pi n x}{L}\right), \sqrt{\frac{2}{L}} \sin \left(\frac{2 \pi n x}{L}\right)\right\}_{n=1}^{\infty}
$$

Exercise:

If possible, uniquely expand $f(x)=x^{2}, 0<x<2 \pi$ in a Fourier series if (a) the period is 2π, (b) the period is not specified.

Exercise

Using the results of the last exercise to prove

$$
\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots=\frac{\pi^{2}}{6}
$$

3.2.1 The Gibbs Phenomenon

A Fourier series may not and does not need to converge uniformly. The occurrence of these peaks of f^{\prime} at the discontinuities of f is known as the Gibbs phenomenon.

Recall "uniform convergence".

3.2.2 Convergence of Fourier Series(Dirichlet's rule)

1. On any sub-interval $\left[a^{\prime}, b^{\prime}\right] \subset[a, b]$ with $a^{\prime}>a, b^{\prime}<b$ on which f is continuous, the Fourier series converges uniformly towards f.
2. At any point $x \in[a, b]$, we have the pointwise limit: when $N \rightarrow \infty$

$$
S_{N}(x) \longrightarrow \frac{\lim _{y \not{ }_{x}} f(y)+\lim _{y \backslash x} f(y)}{2}
$$

Actually the second point needs certain conditions () to hold, but we don't discuss them in VV286.

3.3 The Fourier-Cosine Basis

Cosine functions are even.

- For even functions, we can just use Cosine functions to expand.
- For functions which is not even, we can just use Cosine functions to find its even part.

If you choose $[a, b]=[0, L]$, then the Fourier-Cosine Basis can be

$$
\mathscr{B}_{2}:=\left\{\frac{1}{\sqrt{L}}, \sqrt{\frac{2}{L}} \cos \left(\frac{\pi n x}{L}\right)\right\}_{n=1}^{\infty}
$$

3.4 The Fourier-Sine Basis

Since functions are odd.

- For odd functions, we can just use Sine functions to expand.
- For functions which is not even, we can just use Cosine functions to find its odd part.

If you choose $[a, b]=[0, L]$, then the Fourier-Sine Basis can be

$$
\mathscr{B}_{3}:=\left\{\sqrt{\frac{2}{L}} \sin \left(\frac{\pi n x}{L}\right)\right\}_{n=1}^{\infty}
$$

A Tricky Question:

For an arbitrary $f \in L^{2}([a, b])$, if you expand it using the the Fourier-Cosine Basis and the Fourier-Sine Basis separately with ∞ terms, and obtain series f_{1} and f_{2}, would $f_{1}+f_{2}$ and f becomes equal almost every where?

It's interesting to see knowledge links to each other, does this remind you of any
fundamental theorems you have seen before?
Exercise:
Explain why any function $F(x)$ is a sum of an even function and an odd function in just one way.

Explain why any odd function $f(x)$ would has its Fourier cosine series be 0 .

A Tricky Question:

Can the following question be solved?
Expand $f(x)=\sin x, 0<x<\pi$, in a Fourier cosine series.
Exercise:
Expand $f(x)=x, 0<x<2$, in a half range (a) sine series, (b) cosine series.
Hint: Can you first "extand" f a little bit?

Just a reminder before the last part, $L^{2}([a, b]):=\left\{f:[a, b] \rightarrow \mathbb{C}: \int_{a}^{b}|f(x)|^{2} d x<\infty\right\}$ is defined to containning complex valued functions of a real variable, not the same as complex functions.

3.5 Complex Fourier-Euler Basis

If you choose $[a, b]=[-\pi, \pi]$, then the following would also be a basis of $L^{2}([a, b])$, simply because you can change basis with the Fourier-Euler Basis which we discussed above.

$$
\mathscr{B}_{\mathcal{G}}=\left\{\frac{1}{\sqrt{2 \pi}} e^{i n x}\right\}_{n=-\infty}^{\infty}
$$

So you can also do orthogonal projection onto each vector of this basis to find an approximation. No matter whether f is real valued or not, since just the λ_{i} might be complex numbers.

4 Additional Practice

Exercise:

Find a Fourier series for $f(x)=\cos \alpha x,-\pi<x<\pi$, where $\alpha \neq 0, \pm 1, \pm 2, \pm 3, \ldots \ldots$.
Hint: Can you first "extand" f a little bit?

Exercise:

Prove that

$$
\sin x=x\left(1-\frac{x^{2}}{\pi^{2}}\right)\left(1-\frac{x^{2}}{(2 \pi)^{2}}\right)\left(1-\frac{x^{2}}{(3 \pi)^{2}}\right) \ldots
$$

Hint:

Use the results from the previous exercise.

