Note8 Bessel Equations

Note8 Bessel Equations

1 Bessel Equations of Order v

1. 1 Find the Indical and Recurrence Equations
2. 2 Find the First Independent Solution
3. 2. 1 Find the First Independent Solution with the Larger r_{1}
1. 2. 2 The Bessel Function of the First Kind
1. 3 Find the Second Independent Solution $(v \notin \mathbb{N})$
2. 4 Find the Second Independent Solution $(v \in \mathbb{N})$
1.4. 1 Reduction of Order
3. 4. 2 The Other Method
1. 4. 3 The Bessel Function of the Second Kind

2 Reduce Differential Equations to Bessel Equation
2. $1 x^{2} y^{\prime \prime}+x y^{\prime}-\left(x^{2}+v^{2}\right) y=0$
2. $2 x^{2} y^{\prime \prime}+x y^{\prime}+\left(a^{2} x^{2}-v^{2}\right) y=0$
2. $3 x^{2} y^{\prime \prime}+a x y^{\prime}+\left(x^{2}-v^{2}\right) y=0$
2. 4 * For thoughts: $y^{\prime \prime}-x y=0$

Let's apply the Method of Frobenius to solve Bessel equations.
And analyze the solutions (Bessel functions).

1 Bessel Equations of Order v

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-v^{2}\right) y=0
$$

Having a regular singular point at 0.
The Method of Frobenius can be applied.

1.1 Find the Indical and Recurrence Equations

Choose the Frobenius ansatz

$$
x(t)=t^{r} \sum_{k=0}^{\infty} a_{k} t^{k} \quad a_{0} \neq 0
$$

Besides,

$$
\begin{aligned}
& x p(x)=1, \quad p_{0}=1 \\
& x^{2} q(x)=x^{2}-v^{2}, \quad q_{0}=-v^{2}, \quad q_{2}=1
\end{aligned}
$$

Setting

$$
F(x):=x(x-1)+p_{0} x+q_{0}=x^{2}-v^{2}
$$

We get the indicial equation and recurrence equations

$$
\begin{aligned}
F(r) & =r^{2}-v^{2}=0 \\
a_{m} F(r+m) & =-\sum_{k=0}^{m-1}\left(q_{m-k}+(r+k) p_{m-k}\right) a_{k}, \quad m \geq 1
\end{aligned}
$$

Which gives us

$$
\begin{aligned}
& r^{2}-v^{2}=0 \\
& a_{1}\left((r+1)^{2}-v^{2}\right)=0 \\
& a_{m}=-\frac{a_{m-2}}{(m+r+v)(m+r-v)}, \quad m \geq 2
\end{aligned}
$$

It obviously turns out $r_{1}=v$ and $r_{2}=-v$.
From the result in class we know if $r_{1}-r_{2}=2 v \notin \mathbb{N}$, two independent solutions would be found easily.

And if $r_{1}-r_{2}=2 v \in \mathbb{N}$, we may use the special technique.
However, we will see actually for Bessel Equations, the condition is slightly less strict:
If $v \notin \mathbb{N}$, then r_{1} and r_{2} give two independent solutions.

1.2 Find the First Independent Solution

1.2.1 Find the First Independent Solution with the Larger r_{1}

With the $\operatorname{LARGER} r_{1}=v$, we have

$$
\begin{aligned}
& a_{1}\left((v+1)^{2}-v^{2}\right)=0 \\
& a_{m}=-\frac{a_{m-2}}{(m+2 v) m}, \quad m \geq 2
\end{aligned}
$$

So $a_{1}=a_{3}=a_{5}=\cdots=0$ and

$$
a_{2 k}=\frac{(-1)^{k} a_{0}}{2^{2 k} k!(1+v)(2+v) \cdots(k+v)}
$$

Question:
Notice v may not be an integer. Don't write as factories.
Then how do you simpliy this solution?

1.2.2 The Bessel Function of the First Kind

Recall Euler Gamma function's property:

$$
\Gamma(s+1)=s \Gamma(s)
$$

So it gives

$$
(1+v)(2+v) \cdots(k+v)=\frac{\Gamma(k+1+v)}{\Gamma(1+v)}
$$

And by setting $a_{0}=\frac{2^{-v}}{\Gamma(1+v)}$, we will have the first independent solution be the Bessel function of the first kind of order v

$$
J_{v}(x)=\left(\frac{x}{2}\right)^{v} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!\Gamma(k+1+v)}\left(\frac{x}{2}\right)^{2 k}
$$

Question:
Which region of x does $J_{v}(x)$ defined?
Take $v=1$ as example, we have

$$
J_{1}(x)=\frac{x}{2} \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k}}{2^{2 k}(k+1)!k!}
$$

1.3 Find the Second Independent Solution ($v \notin \mathbb{N}$)

Starting from if $2 v$ is not an integer, with the SMAIIER $r_{2}=-v$, we have

$$
\begin{aligned}
& a_{1}\left((v-1)^{2}-v^{2}\right)=0, \quad a_{1}(2 v-1)=0 \\
& a_{m}=-\frac{a_{m-2}}{(m-2 v) m}, \quad m \geq 2
\end{aligned}
$$

We have $a_{1}=a_{3}=a_{5}=\cdots=0$ and

$$
a_{2 k}=\frac{(-1)^{k} a_{0}}{2^{2 k} k!(1-v)(2-v) \cdots(n-v)}
$$

Similarly,

$$
(1-v)(2-v) \cdots(k-v)=\frac{\Gamma(k+1-v)}{\Gamma(1-v)}
$$

And by setting $a_{0}=\frac{2^{-v}}{\Gamma(1+v)}$, the second independent solution will be the Bessel function of the first kind of negative order $-v$

$$
J_{-v}(x)=\left(\frac{x}{2}\right)^{-v} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!\Gamma(k+1-v)}\left(\frac{x}{2}\right)^{2 k}
$$

Then the general solution is

$$
y(x)=C_{1} J_{v}(x)+C_{2} J_{-v}(x)
$$

But actually, If $2 v$ is an odd integer, which means v is not an integer, the above results also holds. And the combined conclusion is if v is not an integer, the above results will hold.

1.4 Find the Second Independent Solution ($v \in \mathbb{N}$)

1.4.1 Reduction of Order

Set $y_{2}(x)=c(x) \cdot J_{\nu}(x)$, then

$$
\begin{aligned}
& x^{2} y_{2}^{\prime \prime}+x y_{2}^{\prime}+\left(x^{2}-\nu^{2}\right) y_{2}=0 \\
\Rightarrow & x^{2}\left(c^{\prime \prime}(x) J_{\nu}(x)+2 c^{\prime}(x) J_{\nu}^{\prime}(x)+c(x) J_{\nu}^{\prime \prime}(x)\right) \\
& +x\left(c^{\prime}(x) J_{\nu}(x)+c(x) J_{\nu}(x)\right)+\left(x^{2}-\nu^{2}\right) c(x) \cdot J_{\nu}(x)=0 \\
\Rightarrow & x^{2} J_{\nu}(x) c^{\prime \prime}(x)+\left(2 x^{2} J_{\nu}^{\prime}(x)+x J_{\nu}(x)\right) c^{\prime}(x)=0 \\
\Rightarrow & \ln \left|c^{\prime}(x)\right|=\left(-2 \ln \left|J_{\nu}(x)\right|-\ln |x|\right) \\
\Rightarrow & c^{\prime}(x)=\frac{1}{x \cdot J_{\nu}^{2}(x)} \\
\Rightarrow & c(x)=\int \frac{d x}{x \cdot J_{\nu}^{2}(x)}
\end{aligned}
$$

So a second independent solution is given as

$$
y_{2}(x)=J_{\nu}(x) \int \frac{d x}{x \cdot J_{\nu}^{2}(x)}
$$

1.4.2 The Other Method

$$
\begin{gathered}
x_{2}(t)=\left.\frac{\partial}{\partial r}\left(t^{r} \sum_{k=0}^{\infty} a_{k}(r) t^{k}\right)\right|_{r=r_{2}}=c \cdot x_{1}(t) \ln t+t^{r_{2}} \sum_{k=0}^{\infty} a_{k}^{\prime}\left(r_{2}\right) t^{k} \\
\frac{a_{2 k}^{\prime}(r)}{a_{2 k}(r)}=\frac{d}{d r} \ln \left|a_{2 k}(r)\right|
\end{gathered}
$$

Practice:
Using 5 minites to try solving out the second solution by yourself.
Do you find any problems?

Instead of computing $a_{2 k}^{\prime}\left(r_{2}\right)$, let's find these new constants in another way. Assume

$$
y_{2}(x)=a J_{v}(x) \ln x+x^{-v}\left[\sum_{k=0}^{\infty} c_{k} x^{k}\right], \quad x>0
$$

Computing $y_{2} \prime \prime y_{2} \prime \prime(x)$, substituting in the original Bessel Equation, and make use of $J_{v}(x)$ is a solution(as we have done by reduction of order), we can obtain all the constants a, c_{0}, c_{1}, \ldots

Let's try with the Bessel Equation of order 1.

$$
y_{2}(x)=a J_{1}(x) \ln x+x^{-1}\left[\sum_{k=0}^{\infty} c_{k} x^{k}\right], \quad x>0
$$

Substituting back and since $J_{1}(x)$ is a solution, we can simplify the equation to be

$$
2 a x J_{1}^{\prime}(x)-c_{1}+\sum_{k=2}^{\infty}\left(k^{2}-2 k\right) c_{k} x^{k-1}+\sum_{k=0}^{\infty} c_{k} x^{k+1}=0
$$

Substituting for $J_{1}(x)$ then

$$
a\left[\sum_{k=0}^{\infty} \frac{(-1)^{k}(2 k+1) x^{2 k+1}}{2^{2 k}(k+1)!k!}\right]-c_{1}+\sum_{k=0}^{\infty}\left[\left(k^{2}+2 k\right) c_{k+2}+c_{k}\right] x^{k+1}=0
$$

This first gives us $c_{1}=0$.
Further even powers of the left sum must vanish, so $\left(k^{2}+2\right) c_{k+2}+c_{k}$ must vanish for odd k, and then $c_{1}=c_{3}=\cdots=0$.

And from setting the coefficients of odd powers as 0 , we have

$$
\left[(2 k+1)^{2}-1\right] c_{2 k+2}+c_{2 k}=a \frac{(-1)^{k+1}(2 k+1)}{2^{2 k}(k+1)!k!}, \quad k=0,1,2,3, \ldots
$$

For $k=0$, we have

$$
0 \cdot c_{2}+c_{0}=-a
$$

Now we notice $c_{0}=-a$ can be non-zero arbitraty real numbers, and we set $c_{0}=1$ and then $a=-1$. Then

$$
\left[(2 k+1)^{2}-1\right] c_{2 k+2}+c_{2 k}=\frac{(-1)^{k}(2 k+1)}{2^{2 k}(k+1)!k!}, \quad k=1,2,3, \ldots
$$

For $k=1$, we get

$$
\left(3^{2}-1\right) c_{4}+c_{2}=(-1) 3 /\left(2^{2} \cdot 2!\right)
$$

Hence, c_{2} can be selected in arbitrary, and then we fix the second independent solution.
In practice, we always choose $c_{2}=\frac{1}{2^{2}}$, and then we would be possible to simplify:

$$
c_{2 m}=\frac{(-1)^{m+1}\left(H_{m}+H_{m-1}\right)}{2^{2 m} m!(m-1)!}
$$

Where $H_{m}(x):=\sum_{i=1}^{m} \frac{1}{i}, H_{0}=0$, is the Harmonic Numbers. So in conclusion we obtain:

$$
y_{2}(x)=-J_{1}(x) \ln x+\frac{1}{x}\left[1-\sum_{m=1}^{\infty} \frac{(-1)^{m}\left(H_{m}+H_{m-1}\right)}{2^{2 m} m!(m-1)!} x^{2 m}\right], \quad x>0
$$

1.4.3 The Bessel Function of the Second Kind

Actually the second independent solution of Bessel Equations are written as the Bessel function of the second kind of order v, which can be some linear combinition of $J_{v}(x)$ and the second independent solution $y_{2}(x)$. In our specific case here of order 1 , we set the Bessel function of the second kind of order 1 as

$$
Y_{1}(x)=\frac{2}{\pi}\left[-y_{2}(x)+(\gamma-\ln 2) J_{1}(x)\right]
$$

But, in practice, the Bessel function of the second kind of order v can be found from $J_{v}(x)$ and $J_{-v}(x)$:

$$
Y_{v}(x)=\frac{J_{v}(x) \cos \pi v-J_{-v}(x)}{\sin \pi v}
$$

And then the general solution can be written as

$$
y(x)=C_{1} J_{v}(x)+C_{2} Y_{v}(x)
$$

2 Reduce Differential Equations to Bessel Equation

$2.1 x^{2} y^{\prime \prime}+x y^{\prime}-\left(x^{2}+v^{2}\right) y=0$
Exercise:
Show that the general solution of this equation can be expressed as
$y(x)=C_{1} J_{v}(-i x)+C_{2} Y_{v}(-i x)$
$2.2 x^{2} y^{\prime \prime}+x y^{\prime}+\left(a^{2} x^{2}-v^{2}\right) y=0$

Exercise:

Show that the general solution of this equation can be expressed as

$$
y(x)=C_{1} J_{v}(a x)+C_{2} Y_{v}(a x)
$$

$2.3 x^{2} y^{\prime \prime}+a x y^{\prime}+\left(x^{2}-v^{2}\right) y=0$

Exercise:

Show that the general solution of this equation can be expressed as
$y(x)=x^{\frac{1-a}{2}}\left[C_{1} J_{n}(x)+C_{2} Y_{n}(x)\right]$
Hint:
using the substitution $y(x)=x^{\frac{1-a}{2}} z(x)$
2.4 * For thoughts: $y^{\prime \prime}-x y=0$
*Exercise:
Show that the general solution of this equation can be expressed as
$y(x)=C_{1} \sqrt{x} J_{\frac{1}{3}}\left(\frac{2}{3} i x^{\frac{3}{2}}\right)+C_{2} \sqrt{x} J_{-\frac{1}{3}}\left(\frac{2}{3} i x^{\frac{3}{2}}\right)$
Hint:
be careful with $\frac{d^{2} y}{d x^{2}}$

