@Chen Siyi

November 16, 2020

Note7 Power Series Solutions

Note7 Power Series Solutions

- 1 Summary of Power Series Ansatz
- 2 ODE with Analytic Coefficients
- 3 ODE with Coefficents having Singular Points
- 3.1 Regular Singular Points
- 4 Euler's Equation
- 5 The Method of Frobenius
 - 5.1 Basic Method
 - 5. 2 Find a Second Independent Solution

For **homogeneous linear ODEs** with **variable coefficients**, sometimes finding an explicit solution is difficult, then we use the method of **power series ansatz** to solve/approximate solutions.

Recall: homogeneous, linear, ordinary, variable coefficients.

1 Summary of Power Series Ansatz

- 1. Analyze the equation, decide whether we can use power series ansatz around some point
- 2. Choose which form of ansatz to use
- 3. Plug into the ansatz, get recurrence relationship of the coefficients
- 4. Set initial value of coefficients. solve for coefficients to get one or more independent solutions
- 5. If not enough independent solutions are found, using reduction of order to find more solutions
- 6. Obtain the general solution

2 ODE with Analytic Coefficients

x'' + p(t)x' + q(t)x = 0

Where P(t) and Q(t) are **analytic in a neiborhood of** t_0 .

" a neighborhood of t_0 " contains t_0

Then we can choose the ansatz

$$x(t)=\sum_{0}^{\infty}a_k(t-t_0)^k$$

Accordingly,

 $egin{aligned} x \prime (t) &= \sum_{0}^{\infty} k a_k (t-t_0)^{k-1} \ x \prime \prime (t) &= \sum_{0}^{\infty} k (k-1) a_k (t-t_0)^{k-2} \end{aligned}$

Plug the three equations back, we can obtain the relationship of the coefficients $\{a_0, a_1, a_2, ...\}$.

Depending on the situation, after setting values for first n terms (always 2), we can solve 1 to n (expected) independent solutions.

If not enough indepedent solutions are found, sometimes we can use reduction of order to find more.

Comments:

• The solutions found should be valid within its radius of convergence

Radius of Convergence of a Power Series:

•
$$\frac{1}{R} = \lim_{n \to \infty} \frac{|c_{n+1}|}{|c_{n+1}|}$$

• $\frac{1}{R} = \lim_{n \to \infty} \frac{|c_n|}{|c_n|^{1/n}}$

3 ODE with Coefficents having Singular Points

The general form of a homogeneous linear second-order ODE with variable coefficients:

$$P(t)x'' + Q(t)x' + R(t)x = 0$$

It is said to have a **singular point** at t_0 if $P(t_0) = 0$.

Generally around singular points, it's hard to decide or find continuous solutions. But there're some specific cases we can deal with.

3.1 Regular Singular Points

$$x\prime\prime + p(t)x\prime + q(t)x = 0$$

is said to have a **regular singular point** at t_0 if the functions $(t - t_0)p(t)$ and $(t - t_0)^2q(t)$ are analytic in a neighborhood of t_0 . A singular point which is not regular is said to be **irregular**.

The general claim is: if an equation has a regular sigular point at t_0 , then we can assume $p(t) = \frac{p_{-1}}{t-t_0} + \sum_{j=0}^{\infty} p_j (t-t_0)^j$ $q(t) = \frac{q_{-2}}{(t-t_0)^2} + \frac{q_{-1}}{t-t_0} + \sum_{j=0}^{\infty} q_j (t-t_0)^j$ and use the ansatz $x(t) = (t-t_0)^r \sum_{k=0}^{\infty} a_k (t-t_0)^k$ to find solutions.

4 Euler's Equation

$$t^2x''+lpha tx'+eta x=0, \quad lpha,eta\in\mathbb{R}$$

Analysis:

This is exactly the case where the equation $x'' + \alpha \frac{1}{t}x' + \beta \frac{1}{t^2}x = 0$, $\alpha, \beta \in \mathbb{R}$ is having a regular singular point at t = 0.

Then we can choose the ansatz

$$x(t) = t^{\prime}$$

Inserting back and solve for r we get

$$r=-rac{lpha-1}{2}\pmrac{1}{2}\sqrt{(lpha-1)^2-4eta}$$

• $(\alpha - 1)^2 - 4\beta > 0$

$$x\left(t;c_{1},c_{2}
ight)=c_{1}t^{r_{1}}+c_{2}t^{r_{2}},\quad c_{1},c_{2}\in\mathbb{R}$$

• $(lpha-1)^2-4eta=0$, $r_1=r_2=rac{1-lpha}{2}$, need to use reduction of order $x\left(t;c_1,c_2
ight)=c_1t^{r_1}+c_2t^{r_1}\ln t, \quad c_1,c_2\in\mathbb{R}$

Reduction of order:

For equation y'' + p(t)y' + q(t)y = 0, and a known solution $y_1(x)$, let $y_2(x) = v(x)y_1(x)$, then you can solve for v(x) using

$$y_1(t)v'' + (2y_1'(t) + p(t)y_1(t))v' = 0$$

• $(\alpha - 1)^2 - 4\beta < 0$

After getting $x_1(t) = t^{r_1} = t^{\lambda} (\cos(\mu \ln t) + i \sin(\mu \ln t)).$ $x_2(t) = t^{r_1} = t^{\lambda} (\cos(\mu \ln t) - i \sin(\mu \ln t)),$ further have $x(t; c_1, c_2) = c_1 t^{\lambda} \cos(\mu \ln t) + c_2 t^{\lambda} \sin(\mu \ln t), \quad c_1, c_2 \in \mathbb{R}$

5 The Method of Frobenius

5.1 Basic Method

$$x\prime\prime\prime+p(t)x\prime+q(t)x=0$$

 $t^2x\prime\prime\prime+t(tp(t))x\prime+t^2q(t)x=0$

If it has a *regular singular point* at t = 0, then we can write out

$$tp(t) = \sum_{j=0}^{\infty} p_j t^j
onumber \ t^2 q(t) = \sum_{j=0}^{\infty} q_j t^j$$

 p_i and q_i are known constants for us

We choose the *Frobenius ansatz*

$$x(t)=t^r\sum_{k=0}^\infty a_kt^k \qquad a_0
eq 0$$

Accordingly,

$$egin{aligned} x'(t) &= \sum_{k=0}^\infty (r+k) a_k t^{r+k-1} \ x''(t) &= \sum_{k=0}^\infty (r+k) (r+k-1) a_k t^{r+k-2} \end{aligned}$$

Plug back into the equations we then get

$$\left(r(r-1)+p_0r+q_0
ight)a_0=0
onumber \ \left((r+m)(r+m-1)+q_0+(r+m)p_0
ight)a_m++\sum_{k=0}^{m-1}\left(q_{m-k}+(r+k)p_{m-k}
ight)a_k=0 \qquad m\geq 1$$

Setting

$$F(x) := x(x-1) + p_0 x + q_0$$

We get the *indicial equation* and *recurrence equations* to solve for a_k

$$F(r)=0 \ a_m F(r+m)=-\sum_{k=0}^{m-1}\left(q_{m-k}+(r+k)p_{m-k}
ight)a_k, \quad m\geq 1$$

With the recurrence equations, you can usually generate out a easier recurrence equation.

For good and different r_i solved by the indical equation, llus some assumed initial values for a_0 , a_1 , ..., we are possible to solve for all a_k .

If everything goes fine, with $r_1
eq r_2$ are two GOOD solutions, you get two INDEPENDENT solutions.

Question

Find the series solution to the below equation in the vicinity of $x_0=0$

$$2x^2y'' + 7x(x+1)y' - 3y = 0$$

Answer

5.2 Find a Second Independent Solution

But things can go wrong if

- $r_1 = r_2$: then need further work to obtain another solution (<u>how? Later.</u>)
- $r_1=r_2+N$: then though r_1 gives a solution, for r_2 , due to $F(r_2+N)=F(r_1)=0$,
 - if the right-side of the recurrence equation vanishes for $F(r_2 + m) = F(r_2 + N)$,

then a_N is arbitrary, by setting a_N as zero when dealing with r_1 , and as an arbitrary non-zero number when dealing with r_2 , we can further find a second independent solution. Though we can also use another general method (how? Later.)

• if the right-side of the recurrence equation doesn't vanish, need further work to obtain another solution (<u>how? Later.</u>)

Noticing the above 3 cases have one thing in common: $r_1 = r_2 + N$, $N \in \mathbb{N}$ including 0. There's a general method for the above cases.

The recurrence equations can give a relationship $a_k(r)$. Then we have

$$x_2(t) = rac{\partial}{\partial r} igg(t^r \sum_{k=0}^\infty a_k(r) t^k igg) igg|_{r=r_2} = c \cdot x_1(t) \ln t + t^{r_2} \sum_{k=0}^\infty a_k'\left(r_2
ight) t^k$$

where the constant $c \in R$ may vanish. If $r_1 = r_2$, then c = 1.

And a tricky way to find $a'_{2k}(r_2)$ is to use

$$rac{a_{2k}^{\prime}(r)}{a_{2k}(r)}=rac{d}{dr}\mathrm{ln}|a_{2k}(r)|$$

But this method may still fail sometimes... why? Then are there other methods?

Concrete examples are in Note8.