VV286 Recitation Class Note2
 Higher-order ODE \& Systems of ODEs

Chen Siyi
siyi.chen_chicy@sjtu.edu.cn
September 29, 2020

1 Overview

1. System of Equations
2. The Eigenvalue Problem
3. The Spectral Theorem for Self-Adjoint Matrices
4. Non-Diagonalizable Matrices
5. Solutions to Inhomogeneous, Linear Systems
6. Linear Second-Order Equations and Vibrations

2 System of Equations

2.1 Explicit Systems of n first-order Differential Equations

Explicit systems of n first-order differential equations have the form

$$
\dot{x}(t)=F(x, t)
$$

where

$$
x: \mathbb{R} \rightarrow \mathbb{R}^{n}, \quad F: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}^{n}
$$

2.2 Transform Higher-order ODE to System of Equations

Given an explicit ODE of order n,

$$
x^{(n)}(t)=f\left(x, x^{\prime}, x^{\prime \prime}, \ldots, x^{(n-1)}, t\right)
$$

introduce "new variables" by setting

$$
x_{1}:=x, \quad x_{2}:=x^{\prime}, \quad x_{3}:=x^{\prime \prime}, \quad \ldots, \quad x_{n}:=x^{(n-1)}
$$

We then rewrite a n-order ODE as a system of equations

$$
\left(\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
\vdots \\
x_{n}^{\prime}(t)
\end{array}\right)=\left(\begin{array}{c}
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t) \\
\vdots \\
f\left(x_{1}, x_{2}, \ldots, x_{n}, t\right)
\end{array}\right)
$$

Therefore, our general is to solve a IVP involving explicit systems of n first-order differential equations.

$$
\frac{d x}{d t}=F(x, t), \quad x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{n}
$$

Next, how?

2.3 Picard Iteration

This is a method for you to gain an approximate solution.

Guess a function $x^{(0)}(t)$, e.g., $x^{(0)}(t)=x_{0}$ (constant). Then set

$$
x^{(k+1)}(t):=x_{0}+\int_{t_{0}}^{t} F\left(x^{(k)}(s), s\right) d s, \quad k \in \mathbb{N}
$$

This yields a sequence of functions $\left(x^{(k)}(t)\right)$.
Under suitable conditions on the function $\mathrm{F},\left(x^{(k)}(t)\right)$ converges to a (unique) function $\mathrm{x}(\mathrm{t})$. (How do you understand?)

So by iterating enough times, you can gain an approximated solution.

Exercise 1

Using Picard iteration to solve the below IVP:

$$
\frac{d x}{d t}=x t, \quad x(0)=1
$$

2.4 Analyzing the Solution of the General IVP

2.4.1 Existence and Uniqueness

Theorem of Picard-Lindelo" f

Let $x_{0} \in \Omega$, where $\Omega \subset \mathbb{R}^{n}$ is open and let $t_{0} \in I$, where $I \subset \mathbb{R}$ is an interval. Suppose $F: \Omega \times l \rightarrow \mathbb{R}^{n}$ is a continuous function satisfying a Lipschitz estimate in x : there exists an $\mathrm{L}>0$ such that for all $x, y \in \Omega$ and all $t \in I$

$$
\|F(x, t)-F(y, t)\| \leqslant L\|x-y\|
$$

then the initial value problem has a unique solution in some t-interval containing t_{0}.

2.4.2 Stability

Gronwall's Inequality

Under same conditions, x, y satisfies

$$
x^{\prime}(t)=F(x, t), x\left(t_{0}\right)=x_{0}, y^{\prime}(t)=F(y, t), y\left(t_{0}\right)=y_{0}
$$

Then

$$
\|x(t)-y(t)\| \leqslant e^{L \cdot\left|t-t_{0}\right|}\left\|x_{0}-y_{0}\right\|
$$

2.5 Linear System of ODEs

2.5.1 General View of the Solutions

$$
\frac{d x}{d t}=F(x, t)=A(t) x+b(t), \quad x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{n}
$$

where we mainly focus on $A(t)=A$ is constant.

The graph give you an overview of how we will solve the linear system of ODEs.
Next is how can we solve it?

2.5.2 Construction of Solutions for $x_{\text {hom }}$

$$
\frac{d x}{d t}=A(t) x, \quad x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{n}
$$

If you have n solutions $x^{(1)}(t), \ldots, x^{(n)}(t)$, where b_{k} is the base vector, and $x^{(k)}(t)$ solves

$$
\frac{d x}{d t}=A(t) x, \quad x\left(t_{0}\right)=b_{k} \in \mathbb{R}^{n}
$$

writing the fundamental matrix

$$
X(t)=\left(\begin{array}{ccc}
\mid & & \mid \\
x^{(1)}(t) & \ldots & x^{(n)}(t) \\
\mid & & \mid
\end{array}\right)
$$

then

$$
x(t)=X(t) x_{0}
$$

solves the IVP. (why?)

Reminder 1

The solution space of the IVP is a subset of

$$
\operatorname{span}\left\{x^{(1)}(t), \ldots, x^{(n)}(t)\right\}
$$

2.5.3 One Possible way to solve $x_{\text {hom }}$

Thought 1

If you treat A as a constant in R, what's the solution to the below IVP?

$$
\frac{d x}{d t}=A x, \quad x\left(t_{0}\right)=x_{0}
$$

Define:

$$
e^{A t}:=1+\sum_{k=1}^{\infty} \frac{A^{k} t^{k}}{k!}
$$

Reminder 2

Is the operation for $e^{A t}$ well-defined? What is "well-defined" and how do we prove it for $e^{A t}$?

Well-defined

$$
\mathrm{H} \text { is weel-defined if } \phi \in V \text {, then } H \phi \in V
$$

Proof for $e^{A t}$

Use operator norm with euclidean norm in

$$
\|A\|=\sup _{x \in \mathbb{R}^{n} \backslash\{0\}} \frac{|A x|}{|x|}
$$

Then

$$
\sum_{k=1}^{\infty}\left\|\frac{A^{k} t^{k}}{k!}\right\|=\sum_{k=1}^{\infty} \frac{\left\|A^{k}\right\| \cdot\left|t^{k}\right|}{k!} \leqslant \sum_{k=1}^{\infty} \frac{\|A\|^{k} \cdot|t|^{k}}{k!}=e^{|t| \cdot\|A\|}-1<\infty
$$

The series is absolutely convergent, and therefore it converges to some matrix in $\operatorname{Mat}(\mathrm{n} \times \mathrm{n}$, R).

Also we have $\frac{d}{d t} e^{A t}=A e^{A t}$, and when $\mathrm{t}=0, e^{A t}$ will be the identity matrix.

