VV286 Recitation Class Note1 First Order Differantial Equations

Chen Siyi
siyi.chen_chicy@sjtu.edu.cn
September 22, 2020

1 About Me

- Name: Chen Siyi
- Major: ECE in JI \& CS in UM
- E-mail: siyi.chen_chicy@sjtu.edu.cn
- Wechat: csy15355657989
- QQ: 2396091742
- Any questions or discussions are welcomed!

2 Overview

1. Separable Equations
2. Linear Equations
3. Transformable Equations
4. General Integral Curves of First Order ODEs
5. Implicit Equations

3 Separable Equations

3.1 Theorem 1.1.3

Let η be an interior point of I_{y} such that $g(\eta) \neq 0$ and let (Hyp) hold. Then there exists a neighborhood of ξ in I_{x} in which the IVP

$$
y^{\prime}=f(x) g(y), \quad y(\xi)=\eta
$$

has a unique solution $\mathrm{y}(\mathrm{x})$. It can be obtained from

$$
G(y)=\int_{\eta}^{y} \frac{d s}{g(s)}=\int_{\xi}^{x} f(t) d t=F(x)
$$

by solving for y .

Reminder 1

What is the solution if $g(\eta)=0$ in Theorem 1.1.3?

3.2 Equilibrium, Steady-State, Transient Solutions

1. Equilibrium solution:

$$
x_{\text {equi }}(t)=\text { constant }
$$

2. Steady-state solution:

$$
x_{\mathrm{ss}}=\lim _{t \rightarrow \infty} x(t)
$$

3. Transient component:

$$
x(t)-x_{s s}
$$

Exercise 1

Solve the IVP problem:

$$
\frac{d y}{d x}=x^{4} y+x^{4} y^{4}, \quad y(0)=1
$$

4 Linear Equations

A general linear, first-order ordinary differential equation on an open interval $I \subset \mathbb{R}$ has the form

$$
a_{1}(x) y^{\prime}+a_{0}(x) y=f(x), \quad x \in I
$$

where we allow a_{0}, a_{1}, f to be continuous, real-valued functions on I.

4.1 Analyze the Solutions of General IVP

$$
\begin{aligned}
a_{1}(x) y^{\prime}+a_{0}(x) y & =f(x), \quad x \in I \\
y(\xi) & =\eta
\end{aligned}
$$

Thought 1

$L=a_{1} \frac{d}{d x}+a_{2}$ can be viewed as a linear transformation $L: V \rightarrow V$. What is the vector space V ? Can you define a linear transformation T representing the second equation $y(\xi)=\eta$?

4.2 Solving the General IVP

4.2.1 Solving $y_{h o m}$

Theorem 1.1.3.

4.2.2 Solving $y_{p a r t}$

$$
\begin{aligned}
a_{1}(x) y^{\prime}+a_{0}(x) y & =f(x), \quad x \in I \\
y(\xi) & =0
\end{aligned}
$$

1. Duhamel's Principle:

Let $I \subset R$ be an open interval, $x_{0} \in \bar{I}$, and a_{0}, a_{1}, f continuous, real-valued functions on I, where $a_{1}(x) \neq 0$ for all $x \in \bar{I}$. Let y_{ξ} solve the initial value problem

$$
a_{1}(x) y_{\xi}^{\prime}+a_{0}(x) y_{\xi}=0, \quad y_{\xi}(\xi)=\frac{1}{a_{1}(\xi)}
$$

for $x \in \bar{I}$. Then

$$
y(x)=\int_{x_{0}}^{x} f(\xi) y_{\xi}(x) d \xi
$$

solves

$$
a_{1}(x) y^{\prime}+a_{0}(x) y=f(x), \quad y\left(x_{0}\right)=0
$$

Thought 2

You can follow the proof in slides easily. What about understand Duhamel's Principle physically? Let's draw a graph. (Hint: similar to what we have done in the radioactive decay problem.)

2. Variation of Parameters:

Let $y_{\text {part }}(x)=c(x) y_{\text {hom }}(x)$, then we can solve $\mathrm{c}(\mathrm{x})$ from the below equations(why?), and then find $y_{\text {part }}(x)$:

$$
\begin{gathered}
a_{1}(x) c^{\prime}(x) y_{\text {hom }}(x)=f(x) \\
c(\xi)=0
\end{gathered}
$$

3. Integrating Factors:

First solve $\mathrm{u}(\mathrm{x})$ from the below equations:

$$
\begin{gathered}
u^{\prime}(x)=\frac{a_{0}(x)}{a_{1}(x)} u(x) \\
u(\xi)=1
\end{gathered}
$$

Second solve $h(x)=u(x) y(x)$ from the below equations(why?):

$$
\begin{gathered}
h^{\prime}(x)=\frac{f(x) u(x)}{a_{1}(x)} \\
h(\xi)=\eta
\end{gathered}
$$

Further $\mathrm{y}(\mathrm{x})=\mathrm{h}(\mathrm{x}) / \mathrm{u}(\mathrm{x})$.

Exercise 2

Find a general solution for:

$$
\frac{d y}{d x}-\frac{4}{x} y=x^{5} e^{x}
$$

5 Transformable Equations

1. $y^{\prime}=f(a x+b y+c) ; b \neq 0$

Let $u(x)=a x+b y+c$,
Then $u^{\prime}(x)=a+b f(u)$.
2. $y^{\prime}=f(y / x)$

Let $u(x)=\frac{y(x)}{x}$,
Then $u^{\prime}(x)=(f(u)-u) \frac{1}{x}$.
3. $y^{\prime}=f\left(\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}\right)$

Let $u(x)=a_{1} x+b_{1} y(x)+c_{1}, v(x)=a_{2} x+b_{2} y(x)+c_{2}$,
Then $x=\frac{b_{2}\left(u-c_{1}\right)-b_{1}\left(v-c_{2}\right)}{a_{1} b_{2}-a_{2} b_{1}}$,
And $\frac{d u}{d v}$ can be simplified to a form $\frac{d u}{d v}=h(u / v)$ (how?),
Hence you can solve $u(x)=c(v)$ following 5.2,
And then obtain the relationship between x and y .

Exercise3

Find a general solution for:

$$
y^{\prime}=\frac{x-y}{x+y}
$$

4. $y^{\prime}+g y+h y^{\alpha}=0, \alpha \neq 1$ (Bernoulli's equation) Let $u(x)=y^{1-\alpha}$,
Multiply both side with $u(x)$,
then $u^{\prime}(x)+(1-\alpha) g(x) u(x)+(1-\alpha) h(x)=0$.
5. $y^{\prime}+g y+h y^{2}=k$ (Ricatti's equation)

First you guess/know a solution $\phi(x)$,
Let $u(x)=y(x)-\phi(x)$,
From

$$
\left\{\begin{array}{l}
y^{\prime}+g y+h y^{2}=k \\
\phi^{\prime}+g \phi+h \phi^{2}=k
\end{array}\right.
$$

You obtain $u^{\prime}+g u+h\left(y^{2}-\phi^{2}\right)=0$, which gives $u^{\prime}+(g+2 \phi h) u+h u^{2}=0$.
Solve this Bernoulli's equation where $\alpha=2$.

Exercise 4

Solve the IVP:

$$
\left\{\begin{array}{l}
\frac{d y}{d x}=\frac{2 \cos ^{2}(x)-\sin ^{2}(x)+y^{2}}{2 \cos (x)} \\
y(0)=-1
\end{array}\right.
$$

6 General Integral Curves of First Order ODEs

6.1 Overview

$$
\begin{gathered}
h(x, y) y^{\prime}+g(x, y)=0 \\
y^{\prime}=-\frac{g(x, y)}{h(x, y)}, \quad \text { if } h \neq 0
\end{gathered}
$$

1. What is a vector field $\mathrm{F}(\mathrm{x}, \mathrm{y})$? What is an integral curve for a vector field $\mathrm{F}(\mathrm{x}, \mathrm{y})$?
2. How is an integral curve related to an first-order ODE? (Reminder: what does y^{\prime} mean graphically? What are the vectors $(-\mathrm{h}(\mathrm{x}, \mathrm{y}), \mathrm{g}(\mathrm{x}, \mathrm{y}))$ and $(\mathrm{g}(\mathrm{x}, \mathrm{y}), \mathrm{h}(\mathrm{x}, \mathrm{y}))$?)
3. How to solve an integral curve for a vector field $\mathrm{F}(\mathrm{x}, \mathrm{y})$? (Reminder: $F^{\perp}(x, y) ; U^{\perp}(x, y)=$ C_{0})
4. What if initially $F^{\perp}(x, y)$ do not have $U^{\perp}(x, y)$?

6.2 Solving ODE with an Integral Curve

1. Judge $\binom{g(x, y)}{h(x, y)}$ whether: $\frac{\partial g(x, y)}{\partial y}=\frac{\partial h(x, y)}{\partial x}$
2. If not, $\binom{M(x, y) g(x, y)}{M(x, y) h(x, y)}$, find M so that $\frac{\partial(M g)}{\partial y}=\frac{\partial(M h)}{\partial x}$.
i Most general: $M_{y} g+M g_{y}=M_{x} h+M h_{x}$
ii $M(x, y)=M(x): M^{\prime}(x) h=M\left(g_{y}-h_{x}\right) \Rightarrow \frac{M^{\prime}(x)}{M(x)}=\frac{g_{y}-h_{x}}{h}=(\ln M(x))^{\prime}$. There are always two solvable cases.
3. Find U^{\perp} for $F^{\perp}=\binom{M g}{M h}$.
i $\frac{\partial U^{t}}{\partial x}=M g \Rightarrow U^{\perp}=\int M g d x+f(y)$
$\frac{\partial\left(\int M g d x\right)}{\partial y}+f^{\prime}(y)=M h \Rightarrow \operatorname{get} f(y)$
$\Rightarrow \operatorname{get} U^{\perp}(t)$
ii $\left\{\begin{array}{l}\frac{\partial U^{\perp}}{\partial x}=M g \\ \frac{\partial U^{\perp}}{\partial y}=M h\end{array} \Rightarrow\left\{\begin{array}{l}U^{\perp}=\int M g d x+f(y) \\ U^{\perp}=\int M h d y+k(x)\end{array} \Rightarrow U^{\perp}\right.\right.$
4. The solution is in the form $U^{\perp}(x, y)=C_{0}$.

Exercise 5

Find a general solution for:

$$
y^{\prime}=\frac{x-y}{x+y}
$$

7 Implicit Equations

7.1 Overview of Slope Parametrization

$$
F\left(y, y^{\prime} ; x\right)=0
$$

Example: $\left(y^{\prime}\right)^{2}-x y^{\prime}+y=0$

1. Why does the method of integral curves fail for the above equation?
2. What other method can we make use of the information the equation gives us about y^{\prime} ?

Given $y^{\prime \prime}$ exists and $y^{\prime \prime} \neq 0, y^{\prime}$ is monotonic function of x . We can use slope $p=\frac{d y}{d x}$ to parametrize the solution curve.
$x=x(p), y=y(p)$, gives

$$
\dot{y}(p)=\frac{d y}{d p}=\frac{d y}{d x} \frac{d x}{d p}=p \cdot \dot{x}(p)
$$

Further, we can always gain a second relationship between $\mathrm{x}(\mathrm{p})$ and $\mathrm{y}(\mathrm{p})$ by differentiate F on p: $F\left(y, y^{\prime} ; x\right)=0 \Rightarrow F(y(p), p ; x(p))=0$ and it gives

$$
F_{x} \dot{x}+F_{y} \dot{y}+F_{p}=0
$$

With the two equations, sometimes you can solve $y=f(x)$ by eliminating p , or just get $\mathrm{x}(\mathrm{p})$ and $\mathrm{y}(\mathrm{p})$ as solution.

Don't forget the straight line solutions where $y^{\prime \prime}=0$.

$7.2 y=x y^{\prime}+g\left(y^{\prime}\right)$ Clairaut's equation

1. solve for straight line solutions $y=c x+g(c)$.
2. solve for non-trivial solutions by slope parametrization.
3. Parametrize $y(p), x(p)$ with slope p , so it gives

$$
\dot{y}(p)=p \cdot \dot{x}(p)
$$

2. Differentiate $y(p)=x(p) \cdot p+g(p)$ to get

$$
\dot{y}(p)=p \cdot \dot{x}(p)+x(p)+\dot{g}(p)
$$

3. Solve and get $x(p)=-g^{\prime}(p)$ and $y(p)=-p g^{\prime}(p)+g(p)$.
4. solve for non-trivial solutions by finding the envelope.
5. After finding the straight line solutions $y=c x+g(c)$, parametrize the curve as $\gamma(c, x)=\binom{x}{c x+g(c)}$.
6. Using $\frac{\partial \gamma_{1}}{\partial c} \frac{\partial \gamma_{2}}{\partial x}=\frac{\partial \gamma_{1}}{\partial x} \frac{\partial \gamma_{2}}{\partial c}$, we get $x=-g^{\prime}(c)$, then $y(c)=-c g^{\prime}(c)+g(c)$.
7. Get $y=f(x)$ by eliminating c .

Exercise 6

Find a general solution for:

$$
x^{2} y^{\prime}+\cos \left(y+x y^{\prime}\right)=0
$$

$7.3 y=x f\left(y^{\prime}\right)+g\left(y^{\prime}\right) \mathbf{D}^{\prime}$ 'Alembert's equation

1. solve for straight line solutions. $y=c x+d$ is solution if and only if $c=f(c), d=g(c)$.
2. solve for non-trivial solutions by slope parametrization.
3. Parametrize $y(p), x(p)$ with slope p , so it gives

$$
\dot{y}(p)=p \cdot \dot{x}(p)
$$

2. Differentiate $y(p)=x(p) f(p)+g(p)$ then we get $\dot{y}=\dot{x} f+x \dot{f}+\dot{g}$, which gives

$$
x^{\prime}(p)=\frac{f^{\prime}(p) x(p)+g^{\prime}(p)}{p-f(p)}
$$

3. Solve $x(p)$, then further get $y(p)$.

Exercise 7

Find a general solution for:

$$
y=\left(y \cdot y^{\prime}+2 x\right) \cdot y^{\prime}
$$

