@Chen Siyi

November 6, 2020

# Midterm2 Part1

#### Midterm2 Part1

Conponents in the Complex Plane Points in the Complex Plane Sets of Points in the Complex Plane Functions in the Complex Plane **Holomorphic Functions Definition of Holomorphic** The Cauchy-Riemann Differential Equations Power Series **Analytic Functions Definition of Analytic** Holomorphic Functions are Analytic **Complex Integrals** Definition **Basic Property** Cauchy's Integral Theorem Primitive / Independent of Path Cauchy's Integral Theorem Specific Cases of Cauchy's Integral Theorem Jordan's Lemma **Cauchy Integral Formulas Evaluate Real Integrations** Additional Exercise

## **Conponents in the Complex Plane**

## **Points in the Complex Plane**



• For a given  $z \in \mathbb{C}$  and  $\varepsilon > 0$ , the set

 $B_arepsilon(z)= \{w\in \mathbb{C} \mid |w-z|<arepsilon\},$ 

is called an  $\varepsilon$  – neighborhood of z;

 $B_arepsilon(z) = \{w \in \mathbb{C} \mid 0 < |w-z| < arepsilon\}$ ,

is called an  $\varepsilon$  – deleted neighborhood of z.

- A point  $z_0$  is an *interior point* of set  $S \subset \mathbb{C}$  if there is some  $\varepsilon$  neighborhood of  $z_0$  which is a subset of S.
- A point z<sub>0</sub> is an *exterior point* of a set S ⊂ C if there is some ε neighborhood of z<sub>0</sub> containing no points of S (i.e., disjoint from S).
- A point  $z_0$  is a **boundary point** of set  $S \subset \mathbb{C}$  if it is neither an interior point nor an exterior point of *S*.
- A point *z*<sub>0</sub> is an *accumulation point* of set S ⊂ C if *each* deleted neighborhood of *z*<sub>0</sub> contains at least one point of *S*.

## Sets of Points in the Complex Plane

- A set  $\Omega \subset \mathbb{C}$  is called **open** if for every  $z \in \Omega$  there exists an  $\varepsilon > 0$  such that  $B_{\varepsilon}(z) = \{w \in \mathbb{C} | |w z| < \varepsilon\} \subset \Omega$ . A set is called *closed* if its complement is open.
- A set  $\Omega \subset \mathbb{C}$  is called *bounded* if  $\Omega \subset B_R(0)$  for some R > 0.
- A set  $K \subset \mathbb{C}$  is called **compact** if every sequence in K has a subsequence that converges in K. A set  $K \subset \mathbb{C}$  is compact if and only if it is *closed* and *bounded*.
- An open (closed) set  $\Omega \subset \mathbb{C}$  is called *disconnected* if there exist two open (closed) sets  $\Omega_1$ ,  $\Omega_2 \subset \mathbb{C}$  such that  $\Omega_1 \cap \Omega_2 = \emptyset$  and  $\Omega = \Omega_1 \cup \Omega_2$ .
- If  $\Omega$  is not disconnected,  $\Omega$  is called *connected*. A set  $\Omega \subset \mathbb{C}$  is connected if and only if for any two points in  $\Omega$  there exists a curve joining them.
- An open and connected set is called a **domain**, or **region**.
- Define the *diameter* of a set  $\Omega \subset \mathbb{C}$  by

 $\operatorname{diam}(\Omega):=\sup_{z,w\in\Omega}|z-w|$ 

## **Functions in the Complex Plane**

$$f:\mathbb{C} o\mathbb{C},\quad f(x+iy)=u(x,y)+iv(x,y)$$

## **Holomorphic Functions**

### **Definition of Holomorphic**

We say that a function  $f : \mathbb{C} \to \mathbb{C}$  is **complex differentiable**, or **holomorphic**, at  $z \in \mathbb{C}$  if

$$f'(z):=\lim_{h o 0\ h\in \mathbb{C}}rac{f(z+h)-f(z)}{h}$$

A function is holomorphic on an open set  $\Omega \subset \mathbb{C}$  if it is holomorphic at every  $z \in \Omega$ . A function that is holomorphic on  $\mathbb{C}$  is called *entire*.

### **The Cauchy-Riemann Differential Equations**

1. If *f* is *holomorphic*, then the Cauchy-Riemann equations is satisfied:

$$rac{\partial u}{\partial x} = rac{\partial v}{\partial y}, \quad rac{\partial u}{\partial y} = -rac{\partial v}{\partial x}$$

- 2. And suppose that *the partial derivatives of u and v exist*, are *continuous* and *satisfy the Cauchy-Riemann equations*. Then *f* is *holomorphic*.
- 3. Define two operators:

$$rac{\partial}{\partial z}:=rac{1}{2}igg(rac{\partial}{\partial x}+rac{1}{i}rac{\partial}{\partial y}igg),\quad rac{\partial}{\partial ar z}:=rac{1}{2}igg(rac{\partial}{\partial x}-rac{1}{i}rac{\partial}{\partial y}igg)$$

If *f* is *holomorphic*, then

$$f'(z)=rac{\partial f}{\partial z}=rac{\partial u}{\partial z}+irac{\partial v}{\partial z}=2rac{\partial u}{\partial z} \quad ext{ and } \quad rac{\partial f}{\partial ar z}=0$$

### **Power Series**

The power series

$$f(z)=\sum_{n=0}^\infty a_n z^n$$

defines a *holomorphic* function in its *disc of convergence*. The (complex) *derivative* of f is also a power series *having the same radius of convergence* as f, that is,

$$f'(z)=\sum_{n=1}^\infty na_n z^{n-1}$$

A *power series* is *infinitely complex differentiable* in its disc of convergence, and the higher derivatives are also power series obtained by termwise differentiation.

## **Analytic Functions**

## **Definition of Analytic**

A function f defined on an open set  $\Omega \subset \mathbb{C}$  is said to be analytic (or have a power series expansion) at a point  $z_0 \in \Omega$  if there exists a power series *centered at*  $z_0$ , with *positive* radius of convergence, such that

$$f(z)=\sum_{n=0}^\infty a_n(z-z_0)^n$$

for all z in a neighborhood of  $z_0$ . If f has a power series expansion at every point in  $\Omega$ , we say that f is analytic on  $\Omega$ .

• **Useful Remark:** The exponential, sine and cosine functions are (by our definition) analytic at 0 and have an infinite radius of convergence. They are automatically defined for all complex numbers.

### **Holomorphic Functions are Analytic**

Suppose f is a holomorphic function in an open set  $\Omega$ . If D is an open disc centered at  $z_0$  and whose closure is contained in  $\Omega$ , then f has a power series expansion at  $z_0$ 

$$f(z)=\sum_{n=0}^\infty a_n(z-z_0)^n$$

for all  $z\in D$  and the coefficients are given by

$$a_n=rac{f^{(n)}\left(z_0
ight)}{n!}, \hspace{1em} n\in\mathbb{N}$$

## **Complex Integrals**

### Definition

• A *parametrized curve* is a set  $\mathcal{C} \subset \mathbb{C}$  such that there exists a parametrization

$$\gamma:I
ightarrow \mathcal{C}$$

for some interval I  $\rightarrow$  C, where  $\gamma$  is locally injective. We will say that C is smooth if there exists a parametrization  $\gamma$  that is differentiable with  $\gamma'(t) \neq 0$  for all  $t \in I$ .

Understand simply,  $\gamma$  is parametrizing the "position":

$$\gamma(t) = x(t) + i y(t)$$

Positively and negatively **oriented**: parametrized in a counter-clockwise and clockwise fashion, respectively.

• Let  $\Omega \subset \mathbb{C}$  be an open set, f holomorphic on  $\Omega$  and  $\mathcal{C}^* \subset \Omega$  an oriented smooth curve. We then define the *integral* of f along  $\mathcal{C}^*$  by

$$\int_{\mathcal{C}^*} f(z) dz := \int_I f(\gamma(t)) \cdot \gamma'(t) dt = \int_I [u(\gamma(t)) + iv(\gamma(t))] \cdot \gamma'(t) dt$$

Though the most basic definition should be in the below form, sometimes useful for calculation.

$$\int_C f(z)dz = \int_C (u(x,y) + \mathrm{i} v(x,y))(dx + \mathrm{i} dy) = \int_C (u(x,y)dx - v(x,y)dy) + \mathrm{i} \int_C (v(x,y)dx + u(x,y)dy)$$

• Define the *curve length* as

$$\ell(\mathcal{C}) := \left| \int_{\mathcal{C}} dz \right|$$

## **Basic Property**

• Oriented:

$$\int_{-\mathcal{C}^*} f(z) dz = -\int_{\mathcal{C}^*} f(z) dz$$

• Triangular inequality for integrals:

$$\left|\int_{\mathcal{C}^*} f(z) dz 
ight| \leq \int_{\mathcal{C}^*} \left|f(z)
ight| dz$$

\* Triangular inequality:

$$|z_1| - |z_2| \le |z_1 + z_2| \le |z_1| + |z_2|$$

• Upper bound:

$$\left|\int_{\mathcal{C}^*} f(z) dz 
ight| \leq \ell(\mathcal{C}) \cdot \sup_{z \in \mathcal{C}} |f(z)|$$

#### Question

Evaluate the integral along two different paths:

- 1. The line segment with initial point -1 and final point i;
- 2. The arc of the unit circle  $Imz \geq 0$  with initial point –1 and final point i.

$$\int_C |z|^2 dz$$

## **Cauchy's Integral Theorem**

### **Primitive / Independent of Path**

If a continuous function f has a **primitive** F in  $\Omega$ , and  $C^*$  is any curve in  $\Omega$  that begins at  $w_1$  and ends at  $w_2$ , then

$$\int_{\mathcal{C}^{st}}f(z)dz=F\left(w_{2}
ight)-F\left(w_{1}
ight)$$

This is equivalent to

$$\oint _{\mathcal{C}} f(z) dz = 0$$

A holomorphic function f defined in a region  $\Omega$  may not always have a primitive. Recall f(z) = 1/z.

One way to judge the existence of primitive F is analyzing the region  $\Omega$  where the function f is defined.

### **Cauchy's Integral Theorem**

Let U be an open subset of  $\mathbb C$  which is *simply connected*, let  $f: U \to \mathbb C$  be a *holomorphic* function, for any closed curve C in U

$$\oint {}_{\mathcal{C}} f(z) dz = 0$$

## **Specific Cases of Cauchy's Integral Theorem**

• Goursat's Theorem:

Let  $\Omega \subset \mathbb{C}$  be open and f **holomorphic** on  $\Omega$ . Let  $T \subset \Omega$  be a **triangle** whose **interior** is also contained in  $\Omega$ . Then

$$\oint_T f(z)dz = 0$$

• Corollary:

If f is **holomorphic** in an open set  $\Omega$  that contains a **rectangle** R and its **interior**, then

$$\oint _R f(z)dz = 0$$

• Cauchy's Theorem:

If f is **holomorphic** in a **disc**, then for any closed curve C in that disc.

$$\oint_{\mathcal{C}} f(z) dz = 0$$

• Corollary:

Suppose f is *holomorphic* in an open set  $\Omega \subset \mathbb{C}$  containing a *circle*  $\mathcal{C}_0$  and its *interior*. Then

$$\oint \int_{C_0} f(z) dz = 0$$

#### • <u>Toy Contours:</u>

Suppose f is **holomorphic** in an open set  $\Omega \subset \mathbb{C}$  containing a **toy contour** and its **interior**. Then



Simply means: If f is **holomorphic** in a **contour**, then for any closed curve C in that contour (usually we simply choose the boundary of the contour):

$$\oint_c f(z)dz = 0$$

Comment on a special case:

All  $z^n$  has a primitive except for the case where n = -1.

$$\oint \int_{S^1} rac{dz}{z} = \int_0^{2\pi} rac{ie^{it}}{e^{it}} dt = 2\pi i 
eq 0$$

$$\oint_{S^1} \frac{dz}{z^n} = \int_0^{2\pi} \frac{ie^{it}}{e^{nit}} dt = i \int_0^{2\pi} e^{(1-n)it} dt$$
$$= i \int_0^{2\pi} (\cos((n-1)t) - i\sin((n-1)t)) dt = 0$$

## Jordan's Lemma

Assume that for some  $R_0 > 0$  the function  $g : \mathbb{C} \setminus \overline{B_{R_0}(0)} \to \mathbb{C}$  is **holomorphic**. Let

$$f(z) = e^{iaz}g(z), \quad ext{ for some } a > 0$$

Let

$$C_R = ig\{z \in \mathbb{C}: z = R \cdot e^{i heta}, 0 \leq heta \leq \piig\}$$

be a *semi-circle* segment *centered at the origin* in the *upper half-plane* and assume that

$$\sup_{0\leq heta\leq \pi}\left|g\left(Re^{i heta}
ight)
ight|\overset{R
ightarrow\infty}{\longrightarrow}0$$

Then

$$\lim_{R o\infty}\int_{C_R}f(z)dz=0$$

# **Cauchy Integral Formulas**

Suppose *f* is a *holomorphic* function in an open set  $\Omega \subset \mathbb{C}$ . If *D* is an open *disc* whose boundary is contained in  $\Omega$ , then

$$f(z) = rac{1}{2\pi i} \oint {}_C {f(\zeta) \over \zeta - z} d\zeta \quad ext{ for all } z \in D$$

where  $C = \partial D$  is the (**positively oriented**) boundary circle of D.

- The values of a holomorphic function within a disc are fixed by the values of the function on the boundary
- Cauchy's integral formula is also valid for all of our toy contours.

The reason is actually Cauchy Integral Formulas has a more general way to throw it:

Suppose C is a **simple closed** curve and the function f(z) is **holomorphic** on a region **containing** C and its **interior**. We assume C is oriented **counterclockwise**. Then for any  $z_0$  inside C, the integral formula holds. (How do you understand it?)



### Corollary:

If f is a **holomorphic** function in an open set  $\Omega \subset \mathbb{C}$ , then f has infinitely many complex derivatives in  $\Omega$ . Moreover, if D is an open disc whose boundary is contained in  $\Omega$ ,

$$f^{(n)}(z)=rac{n!}{2\pi i} \oint {}_C {f(\zeta)\over (\zeta-z)^{n+1}} d\zeta \quad ext{ for all } z\in D$$

where  $C = \partial D$  is the (**positively oriented**) boundary circle of D.

#### Question

Compute  $\int_C \frac{1}{(z^2+4)^2} dz$  over the contour shown (using Cauchy's integral formula):



Answer

# **Evaluate Real Integrations**

- Extend the real domain to complex domain
  - If only containing x, always directly extend to z
  - If containning sinx, cosx, always extend to  $e^{iz}$
- **Find poles** for the function f(z)
- Decide the contour and the branch if needed
  - Semicircle and Indented Semicircle
  - Circle with Keyholes
  - Multiple Kehole
  - Square
- Obtain the complex integral along the whole contour using theorems or formula
  - **Cauchy's integral theorem** (no poles contained)
  - Cauchy's integral formula (one or two poles, not very complicatied)
  - The Residue Theorem (one pole or multiple poles)

- Except for the integral part we need, *solve or vanish other parts* one by one
  - May need to use *Jordan's Lemma* to prove vanishing
  - May need to use *triangular inequality* and *triangular inequality* for integrals to prove vanishing

Question

Compute the real integral

$$I=\int_{-\infty}^{\infty}rac{1}{\left(x^{2}+1
ight)^{2}}dx$$



# **Additional Exercise**

#### \*Question

Compute  $\int_C \frac{z}{(z^2+4)^2} dz$  over the contour shown (using cauchy's integral formula):



#### Answer

Hint:

Apply piecewise integration.

And you can use the residue theorem... (coming soon)

