@Chen Siyi
November 6, 2020

Midterm2 Part1

Midterm2 Part1
Conponents in the Complex Plane
Points in the Complex Plane
Sets of Points in the Complex Plane
Functions in the Complex Plane
Holomorphic Functions
Definition of Holomorphic
The Cauchy-Riemann Differential Equations
Power Series
Analytic Functions
Definition of Analytic
Holomorphic Functions are Analytic
Complex Integrals
Definition
Basic Property
Cauchy's Integral Theorem
Primitive / Independent of Path
Cauchy's Integral Theorem
Specific Cases of Cauchy's Integral Theorem
Jordan's Lemma
Cauchy Integral Formulas
Evaluate Real Integrations
Additional Exercise

Conponents in the Complex Plane Points in the Complex Plane

- For a given $z \in \mathbb{C}$ and $\varepsilon>0$, the set
$B_{\varepsilon}(z)=\{w \in \mathbb{C}| | w-z \mid<\varepsilon\}$,
is called an $\varepsilon-$ neighborhood of z;
$B_{\varepsilon}(z)=\{w \in \mathbb{C}|0<|w-z|<\varepsilon\}$,
is called an $\varepsilon-$ deleted neighborhood of z.
- A point z_{0} is an interior point of set $S \subset \mathbb{C}$ if there is some ε neighborhood of z_{0} which is a subset of S.
- A point z_{0} is an exterior point of a set $S \subset \mathbb{C}$ if there is some ε neighborhood of z_{0} containing no points of S (i.e., disjoint from S).
- A point z_{0} is a boundary point of set $S \subset \mathbb{C}$ if it is neither an interior point nor an exterior point of S.
- A point z_{0} is an accumulation point of set $\mathrm{S} \subset \mathrm{C}$ if each deleted neighborhood of z_{0} contains at least one point of S.

Sets of Points in the Complex Plane

- A set $\Omega \subset \mathbb{C}$ is called open if for every $z \in \Omega$ there exists an $\varepsilon>0$ such that $B_{\varepsilon}(z)=\{w \in \mathbb{C}$ $||w-z|<\varepsilon\} \subset \Omega$. A set is called closed if its complement is open.
- A set $\Omega \subset \mathbb{C}$ is called bounded if $\Omega \subset B_{R}(0)$ for some $R>0$.
- A set $K \subset \mathbb{C}$ is called compact if every sequence in K has a subsequence that converges in K. A set $K \subset \mathbb{C}$ is compact if and only if it is closed and bounded.
- An open (closed) set $\Omega \subset \mathbb{C}$ is called disconnected if there exist two open (closed) sets Ω_{1}, $\Omega_{2} \subset \mathbb{C}$ such that $\Omega_{1} \cap \Omega_{2}=\emptyset$ and $\Omega=\Omega_{1} \cup \Omega_{2}$.
- If Ω is not disconnected, Ω is called connected. A set $\Omega \subset \mathbb{C}$ is connected if and only if for any two points in Ω there exists a curve joining them.
- An open and connected set is called a domain, or region.
- Define the diameter of a set $\Omega \subset \mathbb{C}$ by

$$
\operatorname{diam}(\Omega):=\sup _{z, w \in \Omega}|z-w|
$$

Functions in the Complex Plane

$$
f: \mathbb{C} \rightarrow \mathbb{C}, \quad f(x+i y)=u(x, y)+i v(x, y)
$$

Holomorphic Functions

Definition of Holomorphic

We say that a function $f: \mathbb{C} \rightarrow \mathbb{C}$ is complex differentiable, or holomorphic, at $z \in \mathbb{C}$ if

$$
f^{\prime}(z):=\lim _{\substack{h \rightarrow 0 \\ h \in \mathbb{C}}} \frac{f(z+h)-f(z)}{h}
$$

A function is holomorphic on an open set $\Omega \subset \mathbb{C}$ if it is holomorphic at every $z \in \Omega$. A function that is holomorphic on \mathbb{C} is called entire.

The Cauchy-Riemann Differential Equations

1. If f is holomorphic, then the Cauchy-Riemann equations is satisfied:

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

2. And suppose that the partial derivatives of u and v exist, are continuous and satisfy the Cauchy-Riemann equations. Then f is holomorphic.
3. Define two operators:

$$
\frac{\partial}{\partial z}:=\frac{1}{2}\left(\frac{\partial}{\partial x}+\frac{1}{i} \frac{\partial}{\partial y}\right), \quad \frac{\partial}{\partial \bar{z}}:=\frac{1}{2}\left(\frac{\partial}{\partial x}-\frac{1}{i} \frac{\partial}{\partial y}\right)
$$

If f is holomorphic, then

$$
f^{\prime}(z)=\frac{\partial f}{\partial z}=\frac{\partial u}{\partial z}+i \frac{\partial v}{\partial z}=2 \frac{\partial u}{\partial z} \quad \text { and } \quad \frac{\partial f}{\partial \bar{z}}=0
$$

Power Series

The power series

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

defines a holomorphic function in its disc of convergence. The (complex) derivative of f is also a power series having the same radius of convergence as f, that is,

$$
f^{\prime}(z)=\sum_{n=1}^{\infty} n a_{n} z^{n-1}
$$

A power series is infinitely complex differentiable in its disc of convergence, and the higher derivatives are also power series obtained by termwise differentiation.

Analytic Functions

Definition of Analytic

A function f defined on an open set $\Omega \subset \mathbb{C}$ is said to be analytic (or have a power series expansion) at a point $z_{0} \in \Omega$ if there exists a power series centered at z_{0}, with positive radius of convergence, such that

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

for all z in a neighborhood of z_{0}. If f has a power series expansion at every point in Ω, we say that f is analytic on Ω.

- Useful Remark: The exponential, sine and cosine functions are (by our definition) analytic at 0 and have an infinite radius of convergence. They are automatically defined for all complex numbers.

Holomorphic Functions are Analytic

Suppose f is a holomorphic function in an open set Ω. If D is an open disc centered at z_{0} and whose closure is contained in Ω, then f has a power series expansion at z_{0}

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

for all $z \in D$ and the coefficients are given by

$$
a_{n}=\frac{f^{(n)}\left(z_{0}\right)}{n!}, \quad n \in \mathbb{N}
$$

Complex Integrals

Definition

- A parametrized curve is a set $\mathcal{C} \subset \mathbb{C}$ such that there exists a parametrization

$$
\gamma: I \rightarrow \mathcal{C}
$$

for some interval $\mathrm{I} \rightarrow \mathrm{C}$, where γ is locally injective. We will say that C is smooth if there exists a parametrization γ that is differentiable with $\gamma^{\prime}(t) \neq 0$ for all $t \in I$.

Understand simply, γ is parametrizing the "position":

$$
\gamma(t)=x(t)+i y(t)
$$

Positively and negatively oriented: parametrized in a counter-clockwise and clockwise fashion, respectively.

- Let $\Omega \subset \mathbb{C}$ be an open set, f holomorphic on Ω and $\mathcal{C}^{*} \subset \Omega$ an oriented smooth curve. We then define the integral of f along \mathcal{C}^{*} by

$$
\int_{\mathcal{C}^{*}} f(z) d z:=\int_{I} f(\gamma(t)) \cdot \gamma^{\prime}(t) d t=\int_{I}[u(\gamma(t))+i v(\gamma(t))] \cdot \gamma^{\prime}(t) d t
$$

Though the most basic definition should be in the below form, sometimes useful for calculation.

$$
\int_{C} f(z) d z=\int_{C}(u(x, y)+\mathrm{i} v(x, y))(d x+\mathrm{i} d y)=\int_{C}(u(x, y) d x-v(x, y) d y)+\mathrm{i} \int_{C}(v(x, y) d x+u(x, y) d y)
$$

- Define the curve length as

$$
\ell(\mathcal{C}):=\left|\int_{\mathcal{C}} d z\right|
$$

Basic Property

- Oriented:

$$
\int_{-\mathcal{C}^{*}} f(z) d z=-\int_{\mathcal{C}^{*}} f(z) d z
$$

- Triangular inequality for integrals:

$$
\left|\int_{\mathcal{C}^{*}} f(z) d z\right| \leq \int_{\mathcal{C}^{*}}|f(z)| d z
$$

* Triangular inequality:

$$
\left|z_{1}\right|-\left|z_{2}\right| \leq\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|
$$

- Upper bound:

$$
\left|\int_{\mathcal{C}^{*}} f(z) d z\right| \leq \ell(\mathcal{C}) \cdot \sup _{z \in \mathcal{C}}|f(z)|
$$

Question

Evaluate the integral along two different paths:

1. The line segment with initial point -1 and final point i ;
2. The arc of the unit circle $\operatorname{Im} z \geq 0$ with initial point -1 and final point i.

$$
\int_{C}|z|^{2} d z
$$

Cauchy's Integral Theorem Primitive / Independent of Path

If a continuous function f has a primitive F in Ω, and \mathcal{C}^{*} is any curve in Ω that begins at w_{1} and ends at w_{2}, then

$$
\int_{\mathcal{C}^{*}} f(z) d z=F\left(w_{2}\right)-F\left(w_{1}\right)
$$

This is equivalent to

$$
\oint_{\mathcal{C}} f(z) d z=0
$$

A holomorphic function f defined in a region Ω may not always have a primitive. Recall $f(z)=1 / z$.

One way to judge the existence of primitive F is analyzing the region Ω where the function f is defined.

Cauchy's Integral Theorem

Let U be an open subset of \mathbb{C} which is simply connected, let $f: U \rightarrow \mathbb{C}$ be a holomorphic function, for any closed curve \mathcal{C} in U

$$
\oint_{\mathcal{c}} f(z) d z=0
$$

Specific Cases of Cauchy's Integral Theorem

- Goursat's Theorem:

Let $\Omega \subset \mathbb{C}$ be open and f holomorphic on Ω. Let $T \subset \Omega$ be a triangle whose interior is also contained in Ω. Then

$$
\oint_{T} f(z) d z=0
$$

- Corollary:

If f is holomorphic in an open set Ω that contains a rectangle R and its interior, then

$$
\oint_{R} f(z) d z=0
$$

- Cauchy's Theorem:

If f is holomorphic in a disc, then for any closed curve \mathcal{C} in that disc.

$$
\oint_{\mathcal{C}} f(z) d z=0
$$

- Corollary:

Suppose f is holomorphic in an open set $\Omega \subset \mathbb{C}$ containing a circle \mathcal{C}_{0} and its interior. Then

$$
\oint_{C_{0}} f(z) d z=0
$$

- Toy Contours:

Suppose f is holomorphic in an open set $\Omega \subset \mathbb{C}$ containing a toy contour and its interior. Then

Simply means: If f is holomorphic in a contour, then for any closed curve \mathcal{C} in that contour (usually we simply choose the boundary of the contour):

$$
\oint_{c} f(z) d z=0
$$

Comment on a special case:

All z^{n} has a primitive except for the case where $n=-1$.

$$
\oint_{S^{1}} \frac{d z}{z}=\int_{0}^{2 \pi} \frac{i e^{i t}}{e^{i t}} d t=2 \pi i \neq 0
$$

$$
\begin{aligned}
\oint_{S^{1}} \frac{d z}{z^{n}} & =\int_{0}^{2 \pi} \frac{i e^{i t}}{e^{n i t}} d t=i \int_{0}^{2 \pi} e^{(1-n) i t} d t \\
& =i \int_{0}^{2 \pi}(\cos ((n-1) t)-i \sin ((n-1) t)) d t=0
\end{aligned}
$$

Jordan's Lemma

Assume that for some $R_{0}>0$ the function $g: \mathbb{C} \backslash \overline{B_{R_{0}}(0)} \rightarrow \mathbb{C}$ is holomorphic. Let

$$
f(z)=e^{i a z} g(z), \quad \text { for some } a>0
$$

Let

$$
C_{R}=\left\{z \in \mathbb{C}: z=R \cdot e^{i \theta}, 0 \leq \theta \leq \pi\right\}
$$

be a semi-circle segment centered at the origin in the upper half-plane and assume that

$$
\sup _{0 \leq \theta \leq \pi}\left|g\left(R e^{i \theta}\right)\right| \xrightarrow{R \rightarrow \infty} 0
$$

Then

$$
\lim _{R \rightarrow \infty} \int_{C_{R}} f(z) d z=0
$$

Cauchy Integral Formulas

Suppose f is a holomorphic function in an open set $\Omega \subset \mathbb{C}$. If D is an open disc whose boundary is contained in Ω, then

$$
f(z)=\frac{1}{2 \pi i} \oint_{C} \frac{f(\zeta)}{\zeta-z} d \zeta \quad \text { for all } z \in D
$$

where $C=\partial D$ is the (positively oriented) boundary circle of D.

- The values of a holomorphic function within a disc are fixed by the values of the function on the boundary
- Cauchy's integral formula is also valid for all of our toy contours.

The reason is actually Cauchy Integral Formulas has a more general way to throw it:
Suppose \mathcal{C} is a simple closed curve and the function $f(z)$ is holomorphic on a region containing \mathcal{C} and its interior. We assume \mathcal{C} is oriented counterclockwise. Then for any z_{0} inside \mathcal{C}, the integral formula holds. (How do you understand it?)

Corollary:

If f is a holomorphic function in an open set $\Omega \subset \mathbb{C}$, then f has infinitely many complex derivatives in Ω. Moreover, if D is an open disc whose boundary is contained in Ω,

$$
f^{(n)}(z)=\frac{n!}{2 \pi i} \oint_{C} \frac{f(\zeta)}{(\zeta-z)^{n+1}} d \zeta \quad \text { for all } z \in D
$$

where $C=\partial D$ is the (positively oriented) boundary circle of D.

Question

Compute $\int_{C} \frac{1}{\left(z^{2}+4\right)^{2}} d z$ over the contour shown (using Cauchy's integral formula):

Evaluate Real Integrations

- Extend the real domain to complex domain
- If only containing x, always directly extend to z
- If containning $\sin x, \cos x$, always extend to $e^{i z}$
- Find poles for the function $f(z)$
- Decide the contour and the branch if needed
- Semicircle and Indented Semicircle
- Circle with Keyholes
- Multiple Kehole
- Square
- Obtain the complex integral along the whole contour using theorems or formula
- Cauchy's integral theorem (no poles contained)
- Cauchy's integral formula (one or two poles, not very complicatied)
- The Residue Theorem (one pole or multiple poles)
- Except for the integral part we need, solve or vanish other parts one by one
- May need to use Jordan's Lemma to prove vanishing
- May need to use triangular inequality and triangular inequality for integrals to prove vanishing

Question
Compute the real integral

$$
I=\int_{-\infty}^{\infty} \frac{1}{\left(x^{2}+1\right)^{2}} d x
$$

Answer

Additional Exercise

*Question
Compute $\int_{C} \frac{z}{\left(z^{2}+4\right)^{2}} d z$ over the contour shown (using cauchy's integral formula):

Answer

Hint:
Apply piecewise integration.
And you can use the residue theorem... (coming soon)

