# VV286 Recitation Class Note <br> Midterm1 Part1 

Chen Siyi<br>siyi.chen_chicy@sjtu.edu.cn<br>October 7, 2020



## 1 Overview

1. Separable Equations
2. Linear Equations
3. Transformable Equations
4. General Integral Curves of First Order ODEs

## 2 Separable Equations

### 2.1 Theorem 1.1.3

Let $\eta$ be an interior point of $I_{y}$ such that $g(\eta) \neq 0$ and let (Hyp) hold. Then there exists a neighborhood of $\xi$ in $I_{x}$ in which the IVP

$$
y^{\prime}=f(x) g(y), \quad y(\xi)=\eta
$$

has a unique solution $\mathrm{y}(\mathrm{x})$. It can be obtained from

$$
G(y)=\int_{\eta}^{y} \frac{d s}{g(s)}=\int_{\xi}^{x} f(t) d t=F(x)
$$

by solving for y .

## Reminder 1

What is the solution if $g(\eta)=0$ in Theorem 1.1.3?

1. First of all, you will always have an obvious solution $y(x)=\eta$
2. Second, if $\int_{\eta}^{y} \frac{d s}{g(s)}$ exist in a small neighborhood of $\eta$, then it's possible to have more solutions, otherwise there's no more solution.

### 2.2 Equilibrium, Steady-State, Transient Solutions

1. Equilibrium solution:

$$
x_{\text {equi }}(t)=\text { constant }
$$

2. Steady-state solution:

$$
x_{\mathrm{ss}}=\lim _{t \rightarrow \infty} x(t)
$$

3. Transient component:

$$
x(t)-x_{s s}
$$

## Exercise 1

Solve the IVP problem:

$$
\sqrt{1+4 x^{2}} d y=y^{3} x d x, \quad y(0)=-1
$$

## Solution 1

Separating variables gives us:

$$
\frac{d y}{y^{3}}=\frac{x d x}{\sqrt{1+4 x^{2}}}
$$

Integrating gives us:

$$
\int \frac{d y}{y^{3}}=\int \frac{x d x}{\sqrt{1+4 x^{2}}}
$$

Let $u=1+4 x^{2}$,

$$
\int \frac{d y}{y^{3}}=\frac{1}{8} \int \frac{d u}{\sqrt{u}}
$$

So

$$
\frac{-1}{2 y^{2}}=\frac{1}{4} \sqrt{1+4 x^{2}}+K
$$

Using $y(0)=-1$, we find the solution (since we should find a continuos solution):

$$
y=\frac{-\sqrt{2}}{\sqrt{3-\sqrt{1+4 x^{2}}}}
$$

## 3 Linear Equations

A general linear, first-order ordinary differential equation on an open interval $I \subset \mathbb{R}$ has the form

$$
a_{1}(x) y^{\prime}+a_{0}(x) y=f(x), \quad x \in I
$$

where we allow $a_{0}, a_{1}$, f to be continuous, real-valued functions on I.

### 3.1 Analyze the Solutions of General IVP

$$
\begin{aligned}
a_{1}(x) y^{\prime}+a_{0}(x) y & =f(x), \quad x \in I \\
y(\xi) & =\eta
\end{aligned}
$$

## Reminder 2

$L=a_{1} \frac{d}{d x}+a_{2}$ represents a linear transformation, which can be viewed as a special operator:...


### 3.2 Solving the General IVP

### 3.2.1 Solving $y_{\text {hom }}$

Theorem 1.1.3.

### 3.2.2 Solving $y_{p a r t}$

$$
\begin{aligned}
a_{1}(x) y^{\prime}+a_{0}(x) y & =f(x), \quad x \in I \\
y(\xi) & =0
\end{aligned}
$$

## 1. Duhamel's Principle:

Let $I \subset R$ be an open interval, $x_{0} \in \bar{I}$, and $a_{0}, a_{1}$, f continuous, real-valued functions on I, where $a_{1}(x) \neq 0$ for all $x \in \bar{I}$. Let $y_{\xi}$ solve the initial value problem

$$
a_{1}(x) y_{\xi}^{\prime}+a_{0}(x) y_{\xi}=0, \quad y_{\xi}(\xi)=\frac{1}{a_{1}(\xi)}
$$

for $x \in \bar{I}$. Then

$$
y(x)=\int_{x_{0}}^{x} f(\xi) y_{\xi}(x) d \xi
$$

solves

$$
a_{1}(x) y^{\prime}+a_{0}(x) y=f(x), \quad y\left(x_{0}\right)=0
$$

## 2. Variation of Parameters:

Let $y_{\text {part }}(x)=c(x) y_{\text {hom }}(x)$, then we can solve $\mathrm{c}(\mathrm{x})$ from the below equations(why?), and then find $y_{\text {part }}(x)$ :

$$
\begin{gathered}
a_{1}(x) c^{\prime}(x) y_{\mathrm{hom}}(x)=f(x) \\
c(\xi)=0
\end{gathered}
$$

## 3. Integrating Factors:

First solve $u(x)$ from the below equations:

$$
\begin{gathered}
u^{\prime}(x)=\frac{a_{0}(x)}{a_{1}(x)} u(x) \\
u(\xi)=1
\end{gathered}
$$

Second solve $h(x)=u(x) y(x)$ from the below equations(why?):

$$
\begin{gathered}
h^{\prime}(x)=\frac{f(x) u(x)}{a_{1}(x)} \\
h(\xi)=\eta
\end{gathered}
$$

Further $\mathrm{y}(\mathrm{x})=\mathrm{h}(\mathrm{x}) / \mathrm{u}(\mathrm{x})$.

## Exercise 2

Find a general solution for:

$$
-\frac{y^{\prime}}{4}=y+2
$$

## Solution 2

This is a special case, and also help you understand the idea behind "integrating factors". Here you can guess out $u=e^{4 t}$, let $h=u y=e^{4 t} y$, then

$$
h^{\prime}=-8 e^{4 t}
$$

So

$$
\begin{gathered}
u y=h=-2 e^{4 t}+c \\
y=c e^{-4 t}-2
\end{gathered}
$$

## 4 Transformable Equations

1. $y^{\prime}=f(a x+b y+c) ; b \neq 0$

Let $u(x)=a x+b y+c$,
Then $u^{\prime}(x)=a+b f(u)$.
2. $y^{\prime}=f(y / x)$

Let $u(x)=\frac{y(x)}{x}$,
Then $u^{\prime}(x)=(f(u)-u) \frac{1}{x}$.
*3. $y^{\prime}=f\left(\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}\right)$
Let $u(x)=a_{1} x+b_{1} y(x)+c_{1}, v(x)=a_{2} x+b_{2} y(x)+c_{2}$,
Then $x=\frac{b_{2}\left(u-c_{1}\right)-b_{1}\left(v-c_{2}\right)}{a_{1} b_{2}-a_{2} b_{1}}$,
And $\frac{d u}{d v}$ can be simplified to a form $\frac{d u}{d v}=h(u / v)$ (how?),
Hence you can solve $u(x)=c(v)$ following 5.2,
And then obtain the relationship between x and y .
4. $y^{\prime}+g y+h y^{\alpha}=0, \alpha \neq 1$ (Bernoulli's equation)

Let $u(x)=y^{1-\alpha}$,
Multiply both side with $\mathrm{u}(\mathrm{x})$,
then $u^{\prime}(x)+(1-\alpha) g(x) u(x)+(1-\alpha) h(x)=0$.
5. $y^{\prime}+g y+h y^{2}=k$ (Ricatti's equation)

First you guess/know a solution $\phi(x)$,
Let $u(x)=y(x)-\phi(x)$,
From

$$
\left\{\begin{array}{l}
y^{\prime}+g y+h y^{2}=k \\
\phi^{\prime}+g \phi+h \phi^{2}=k
\end{array}\right.
$$

You obtain $u^{\prime}+g u+h\left(y^{2}-\phi^{2}\right)=0$, which gives $u^{\prime}+(g+2 \phi h) u+h u^{2}=0$.
Solve this Bernoulli's equation where $\alpha=2$.

## Exercise 3

Find every nonzero solution of the differential equation

$$
y^{\prime}=y+2 y^{5}
$$

## Solution 3

This is a Bernoulli equation for $\alpha=5$. Multiply the equation by $u=y^{-4}$, then

$$
-\frac{u^{\prime}}{4}=u+2
$$

Which is the function we solved in exercise 2.

$$
\begin{gathered}
u=c e^{-4 t}-2 \\
y(t)= \pm \frac{1}{\left(c e^{-4 t}-2\right)^{1 / 4}}
\end{gathered}
$$

## 5 General Integral Curves of First Order ODEs

### 5.1 Overview

$$
\begin{gathered}
h(x, y) y^{\prime}+g(x, y)=0 \\
y^{\prime}=-\frac{g(x, y)}{h(x, y)}, \quad \text { if } h \neq 0
\end{gathered}
$$

1. A vector field $\mathrm{F}(\mathrm{x}, \mathrm{y})$ and integral curves for $\mathrm{F}(\mathrm{x}, \mathrm{y})$ ?
2. An integral curve describes a trajectory, and a function for a trajectory describes the positions and thus describes the relationship between x and y , so it can be seen as a solution to certain functions. Besides, $y^{\prime}$ is the slope, containing the direction of vectors $(-\mathrm{h}(\mathrm{x}, \mathrm{y}), \mathrm{g}(\mathrm{x}, \mathrm{y}))$ in $\mathrm{F}(\mathrm{x}, \mathrm{y})$ and $(\mathrm{g}(\mathrm{x}, \mathrm{y}), \mathrm{h}(\mathrm{x}, \mathrm{y}))$ in $F^{\perp}(x, y)$.
3. If for $F^{\perp}(x, y), U^{\perp}(x, y)=C_{0}$ exists, then integral curves for $\mathrm{F}(\mathrm{x}, \mathrm{y})$ is just trajectories where $U^{\perp}(x, y)=C_{0}$ is constant.
4. If initially $F^{\perp}(x, y)$ do not have $U^{\perp}(x, y)$, we try to adjust the fields a little without changing the directions.


### 5.2 Solving ODE with an Integral Curve

1. Judge $\binom{g(x, y)}{h(x, y)}$ whether: $\frac{\partial g(x, y)}{\partial y}=\frac{\partial h(x, y)}{\partial x}$
2. If not, $\binom{M(x, y) g(x, y)}{M(x, y) h(x, y)}$, find M so that $\frac{\partial(M g)}{\partial y}=\frac{\partial(M h)}{\partial x}$.
i Most general: $M_{y} g+M g_{y}=M_{x} h+M h_{x}$
ii Let $M(x, y)=M(x): M^{\prime}(x) h=M\left(g_{y}-h_{x}\right) \Rightarrow \frac{M^{\prime}(x)}{M(x)}=\frac{g_{y}-h_{x}}{h}=(\ln M(x))^{\prime}$
3. Find $U^{\perp}$ for $F^{\perp}=\binom{M g}{M h}$.

$$
\begin{aligned}
& \text { i } \frac{\partial U^{t}}{\partial x}=M g \Rightarrow U^{\perp}=\int M g d x+f(y) \\
& \quad \frac{\partial\left(\int M g d x\right)}{\partial y}+f^{\prime}(y)=M h \Rightarrow \operatorname{get} f(y) \\
& \quad \Rightarrow g e t U^{\perp}(t) \\
& \text { ii }\left\{\begin{array} { l } 
{ \frac { \partial U ^ { \perp } } { \partial x } = M g } \\
{ \frac { \partial U ^ { \perp } } { \partial y } = M h }
\end{array} \Rightarrow \left\{\begin{array}{l}
U^{\perp}=\int M g d x+f(y) \\
U^{\perp}=\int M h d y+k(x)
\end{array} \Rightarrow U^{\perp}\right.\right.
\end{aligned}
$$

4. The solution is in the form $U^{\perp}(x, y)=C_{0}$.

## Exercise 4

Find all solutions y to the differential equation

$$
\left(t^{2}+t y\right) y^{\prime}+\left(3 t y+y^{2}\right)=0
$$

## Solution 4

We first verify whether this equation is exact(i.e. $\left.U^{\perp}(x, y)\right)$ exist.

$$
\begin{array}{lll}
h(t, y)=t^{2}+t y & \Rightarrow & \partial_{t} h(t, y)=2 t+y \\
g(t, y)=3 t y+y^{2} & \Rightarrow \partial_{y} g(t, y)=3 t+2 y
\end{array}
$$

The differential equation is not exact. Let

$$
\begin{aligned}
\frac{M^{\prime}}{M} & =\frac{\partial_{y} g(t, y)-\partial_{t} h(t, y)}{h(t, y)} \\
& =\frac{(3 t+2 y)-(2 t+y)}{\left(t^{2}+t y\right)} \\
& =\frac{(t+y)}{t(t+y)} \\
& =\frac{1}{t} \Rightarrow \frac{M^{\prime}}{M}=\frac{1}{t}
\end{aligned}
$$

Solving it gives $M(t)=t$.

$$
\begin{aligned}
& \tilde{h}(t, y)=t^{3}+t^{2} y \\
& \tilde{g}(t, y)=3 t^{2} y+t y^{2}
\end{aligned}
$$

Then

$$
\partial_{y} U^{\perp}=t^{3}+t^{2} y \Rightarrow U^{\perp}(t, y)=\int\left(t^{3}+t^{2} y\right) d y+f(t)
$$

So

$$
U^{\perp}(t, y)=t^{3} y+\frac{1}{2} t^{2} y^{2}+f(t)
$$

And

$$
3 t^{2} y+t y^{2}+f^{\prime}(t)=\partial_{t} U^{\perp}(t, y)=\tilde{g}(t, y)=3 t^{2} y+t y^{2}
$$

So let $f(t)=0$. $U^{\perp}(t, y)=t^{3} y+\frac{1}{2} t^{2} y^{2}$.
All solutions y to the differential equation satisfy the equation

$$
t^{3} y(t)+\frac{1}{2} t^{2}(y(t))^{2}=c_{0}
$$

