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For homogeneous linear ODEs with variable coefficients, sometimes finding an explicit
solution is difficult, then we use the method of power series ansatz to solve/approximate
solutions.

Recall: homogeneous, linear, ordinary, variable coefficients.

1 Summary of Power Series Ansatz  
1. Analyze the equation, decide whether we can use power series ansatz around some point
2. Choose which form of ansatz to use
3. Plug into the ansatz, get recurrence relationship of the coefficients



4. Set initial value of coeffiencients. solve for coefficients to get one or more independent
solutions

5. If not enough independent solutions are found, using reduction of order to find more
solutions

6. Obtain the general solution

 

2 Ansatz1: ODE with Analytic Coefficients  

Where  and  are analytic in a neiborhood of .

“ a neighborhood of ” contains 

Then we can choose the ansatz

Accordingly,

Plug the three equations back, we can obtain the relationship of the coefficients { , , , ...}.

Depending on the situation, after setting values for first  terms (always 2), we can solve 1 to 
(expected) independent solutions.

If not enough indepedent solutions are found, sometimes we can use reduction of order to find
more.

Exercise 1:

SAMPLE Ex2

 

 

Comments:

If not specified and 0 is a regular point, it's easier to do with 
The solutions found should be valid within its radius of convergence

Radius of Convergence of a Power Series:

 

3 ODE Having Singular Points



3 ODE Having Singular Points  
The general form of a homogeneous linear second-order ODE with variable coefficients:

P,Q,R represents "polynomials". Then it is said to have a singular point at  if .

Generally around singular points, it's hard to decide or find continuous solutions. But there're two
specific cases we can deal with.

3.1 Regular Singular Points  

is said to have a regular singular point at  if the functions  and  are
analytic in a neighborhood of . A singular point which is not regular is said to be irregular.

The general claim is: if an equation has a regular sigular point at , then we can assume 

 and use the ansatz 

to find solutions.

 

4 Ansatz2: Euler's Equation  

Analysis:

This is exactly the case where the equation  is having a

regular singular point at .

But for this specific case of the Euler's Equation, we can choose an easier ansatz.

We can choose the ansatz

Inserting back and solve for  we get

 , , need to use reduction of order

Reduction of order:



For equation , and a known solution , let ,
then you can solve for  using

After getting . 
, further have

Exercise 2:

Find the solution to the following differential equation on any interval not containing 

 

 

5 Ansatz3: The Method of Frobenius  

5.1 Basic Method  

If it has a regular singular point at , then we can write out

 and  are known constants for us

We choose the Frobenius ansatz

Accordingly,

Plug back into the equations we then get



Setting

We get the indicial equation and recurrence equations to solve for 

With the recurrence equations, you can usually generate out a easier recurrence equation.

For good and different  solved by the indical equation, llus some assumed initial values for , 
, ..., we are possible to solve for all .

If everything goes fine, with  are two GOOD solutions, you get two INDEPENDENT
solutions.

 

5.2 Find a Second Independent Solution  

5.2.1 Problem  

But things can go wrong if , 

: then need further work to obtain another solution

, : then though  gives a solution, for , due to 
,

if the right-side of the recurrence equation vanishes for ,

then  is arbitrary, by setting  as zero when dealing with (but you may not be
able to do this), and as an arbitrary non-zero number when dealing with , we may
further find a second independent solution. Though we can also use another general
method

if the right-side of the recurrence equation doesn't vanish, need further work to obtain
another solution

5.2.2 One Possible Solution  

The recurrence equations can give a relationship , where you can view  as a function of 
. Then we have

where the constant  may vanish. If , then .

And a tricky way to find  is to use



What you should notice: as we will see in Bessel functions, this method don't always
work(why?), but you can get  by

use reduction of order
view the above above equation as a new "ansatz"

Exercise 3:

Find the general solution for

 

 

 

6 Bessel Equations of Order  

Having a regular singular point at 0.

The Method of Frobenius can be applied.

6.1 Find the Indical and Recurrence Equations  

Choose the Frobenius ansatz

Besides,

Setting

We get the indicial equation and recurrence equations

Which gives us



It obviously turns out  and .

If  , then  and  give two independent solutions.

But for Bessel Equations, the condition is slightly less strict:

If , then  and  give two independent solutions.

6.2 Find the First Independent Solution  

6.2.1 Find the First Independent Solution with the Larger  

With the LARGER , we have

So  and

6.2.2 The Bessel Function of the First Kind  

Recall Euler Gamma function's property:

So it gives

And by setting , we will have the first independent solution be the Bessel function of

the first kind of order 

Take  as example, we have



6.3 Find the Second Independent Solution ( )  

Starting from if  is not an integer, with the SMAllER , we have

We have  and

Similarly,

And by setting , the second independent solution will be the Bessel function of the

first kind of negative order 

Then the general solution is

But actually, If  is an odd integer, which means  is not an integer, the above results also holds.

And the combined conclusion is if  is not an integer, the above results will hold.

6.3.1 Another Example:  

Recall what you have seen in class with , you are "lucky" enough to find a second
independent solution directly with . (Exactly the case where  but !)

Which is in slide 533, and there actually exsits a small typo.

You use  to get the Bessel function of the first kind of order 1/2  and use 

 to get the Bessel function of the second kind of order 1/2  (Notice

the minus sign!). Actually,

Exercise 4:

SAMPLE Ex4



 

6.4 Find the Second Independent Solution ( )  

6.4.1 Reduction of Order  

Set , then

So a second independent solution is given as

6.4.2 The Second Method only for  

Will fail except for , because  has no definition at 

6.4.3 The Third Method  

Let's find these new constants in another way. Using the "ansatz"

Computing , , substituting in the original Bessel Equation, and make use of  is a
solution(as we have done by reduction of order), we can obtain all the constants 

For example, if you try with order 1, where you also choose , you would get

 and:

Where , , is the Harmonic Numbers. In conclusion:



6.4.4 The Bessel Function of the Second Kind  

Actually the second independent solution of Bessel Equations can be a more beautiful form: the
Bessel function of the second kind of order , which is some linear combinition of  and a
second independent solution  we find. In our specific case for  of order 1, we set the
Bessel function of the second kind of order 1 as

But, in practice, the Bessel function of the second kind of order  can be found from  and 
:

And then the general solution can be written as

 

7 Transform Differential Equations to Bessel
Equation

 

Key Take-away:

,  is a known function

,  is a known function

 

7.1  

(Omitted)Exercise 5:

Transform this equation to a Bessel equation of order 

 

 

 



 

7.2  

(Omitted)Exercise 6:

Transform this equation to a Bessel equation using the substitution .
What's the order?

 

 

 

7.3   

Exercise 7:

Show that the general solution of this equation can be expressed as

 

 

 

 

Exercise 8:

SAMPLE Ex5
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