@Chen Siyi

December 8, 2020

Final Part1

Final Part11 Summary of Power Series Ansatz
2 Ansatz1: ODE with Analytic Coefficients
3 ODE Having Singular Points
3. 1 Regular Singular Points
4 Ansatz2: Euler's Equation
5 Ansatz3: The Method of Frobenius
5. 1 Basic Method
5. 2 Find a Second Independent Solution
5. 2. 1 Problem
5. 2. 2 One Possible Solution
6 Bessel Equations of Order v
6. 1 Find the Indical and Recurrence Equations
6. 2 Find the First Independent Solution
6. 2. 1 Find the First Independent Solution with the Larger r_{1}
6. 2. 2 The Bessel Function of the First Kind
6. 3 Find the Second Independent Solution ($v \notin \mathbb{N}$)
6. 3. 1 Another Example: $v=\frac{1}{2}$
6. 4 Find the Second Independent Solution $(v \in \mathbb{N})$
6. 4. 1 Reduction of Order
6. 4. 2 The Second Method only for $v=0$
6. 4. 3 The Third Method
6. 4. 4 The Bessel Function of the Second Kind
7 Transform Differential Equations to Bessel Equation
7. $1 x^{2} y^{\prime \prime}+x y^{\prime}+\left(a^{2} x^{2}-v^{2}\right) y=0$
7. $2 x^{2} y^{\prime \prime}+a x y^{\prime}+\left(x^{2}-v^{2}\right) y=0$
7. $3 y^{\prime \prime}-x y=0$

For homogeneous linear ODEs with variable coefficients, sometimes finding an explicit solution is difficult, then we use the method of power series ansatz to solve/approximate solutions.

Recall: homogeneous, linear, ordinary, variable coefficients.

1 Summary of Power Series Ansatz

1. Analyze the equation, decide whether we can use power series ansatz around some point
2. Choose which form of ansatz to use
3. Plug into the ansatz, get recurrence relationship of the coefficients
4. Set initial value of coeffiencients. solve for coefficients to get one or more independent solutions
5. If not enough independent solutions are found, using reduction of order to find more solutions
6. Obtain the general solution

2 Ansatz1: ODE with Analytic Coefficients

$$
x \prime \prime+p(t) x \prime+q(t) x=0
$$

Where $p(t)$ and $q(t)$ are analytic in a neiborhood of t_{0}.
" a neighborhood of t_{0} " contains t_{0}
Then we can choose the ansatz

$$
x(t)=\sum_{0}^{\infty} a_{k}\left(t-t_{0}\right)^{k}
$$

Accordingly,
$x \prime(t)=\sum_{0}^{\infty} k a_{k}\left(t-t_{0}\right)^{k-1}$
$x \prime \prime(t)=\sum_{0}^{\infty} k(k-1) a_{k}\left(t-t_{0}\right)^{k-2}$
Plug the three equations back, we can obtain the relationship of the coefficients $\left\{a_{0}, a_{1}, a_{2}, \ldots\right\}$.
Depending on the situation, after setting values for first n terms (always 2), we can solve 1 to n (expected) independent solutions.

If not enough indepedent solutions are found, sometimes we can use reduction of order to find more.

Exercise 1:

SAMPLE Ex2

Comments:

- If not specified and 0 is a regular point, it's easier to do with $t_{0}=0$
- The solutions found should be valid within its radius of convergence

Radius of Convergence of a Power Series:

- $\frac{1}{R}=\lim _{n \rightarrow \infty} \frac{\left|c_{n+1}\right|}{\left|c_{n}\right|}$
- $\frac{1}{R}=\lim _{n \rightarrow \infty}\left|c_{n}\right|^{1 / n}$

3 ODE Having Singular Points

The general form of a homogeneous linear second-order ODE with variable coefficients:

$$
P(t) x \prime \prime+Q(t) x \prime+R(t) x=0
$$

P, Q, R represents "polynomials". Then it is said to have a singular point at t_{0} if $P\left(t_{0}\right)=0$.
Generally around singular points, it's hard to decide or find continuous solutions. But there're two specific cases we can deal with.

3.1 Regular Singular Points

$$
x \prime \prime+p(t) x \prime+q(t) x=0
$$

is said to have a regular singular point at t_{0} if the functions $\left(t-t_{0}\right) p(t)$ and $\left(t-t_{0}\right)^{2} q(t)$ are analytic in a neighborhood of t_{0}. A singular point which is not regular is said to be irregular.

The general claim is: if an equation has a regular sigular point at t_{0}, then we can assume $p(t)=\frac{p_{-1}}{t-t_{0}}+\sum_{j=0}^{\infty} p_{j}\left(t-t_{0}\right)^{j}$
$q(t)=\frac{q_{-2}}{\left(t-t_{0}\right)^{2}}+\frac{q_{-1}}{t-t_{0}}+\sum_{j=0}^{\infty} q_{j}\left(t-t_{0}\right)^{j}$ and use the ansatz $x(t)=\left(t-t_{0}\right)^{r} \sum_{k=0}^{\infty} a_{k}\left(t-t_{0}\right)^{k}$ to find solutions.

4 Ansatz2: Euler's Equation

$$
t^{2} x^{\prime \prime}+\alpha t x^{\prime}+\beta x=0, \quad \alpha, \beta \in \mathbb{R}
$$

Analysis:
This is exactly the case where the equation $x^{\prime \prime}+\alpha \frac{1}{t} x^{\prime}+\beta \frac{1}{t^{2}} x=0, \quad \alpha, \beta \in \mathbb{R}$ is having a regular singular point at $t=0$.

But for this specific case of the Euler's Equation, we can choose an easier ansatz.
We can choose the ansatz

$$
x(t)=t^{r}
$$

Inserting back and solve for r we get

$$
r=-\frac{\alpha-1}{2} \pm \frac{1}{2} \sqrt{(\alpha-1)^{2}-4 \beta}
$$

- $(\alpha-1)^{2}-4 \beta>0$

$$
x\left(t ; c_{1}, c_{2}\right)=c_{1} t^{r_{1}}+c_{2} t^{r_{2}}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

- $(\alpha-1)^{2}-4 \beta=0, r_{1}=r_{2}=\frac{1-\alpha}{2}$, need to use reduction of order

$$
x\left(t ; c_{1}, c_{2}\right)=c_{1} t^{r_{1}}+c_{2} t^{r_{1}} \ln t, \quad c_{1}, c_{2} \in \mathbb{R}
$$

Reduction of order:

For equation $y \prime \prime+p(t) y \prime+q(t) y=0$, and a known solution $y_{1}(x)$, let $y_{2}(x)=v(x) y_{1}(x)$, then you can solve for $v(x)$ using

$$
y_{1}(t) v \prime \prime+\left(2 y_{1} \prime(t)+p(t) y_{1}(t)\right) v \prime=0
$$

- $(\alpha-1)^{2}-4 \beta<0$

After getting $x_{1}(t)=t^{r_{1}}=t^{\lambda}(\cos (\mu \ln t)+i \sin (\mu \ln t))$.
$x_{2}(t)=t^{r_{1}}=t^{\lambda}(\cos (\mu \ln t)-i \sin (\mu \ln t))$, further have

$$
x\left(t ; c_{1}, c_{2}\right)=c_{1} t^{\lambda} \cos (\mu \ln t)+c_{2} t^{\lambda} \sin (\mu \ln t), \quad c_{1}, c_{2} \in \mathbb{R}
$$

Exercise 2:

Find the solution to the following differential equation on any interval not containing $x=-6$

$$
3(x+6)^{2} y^{\prime \prime}+25(x+6) y^{\prime}-16 y=0
$$

5 Ansatz3: The Method of Frobenius

5.1 Basic Method

$$
\begin{gathered}
x \prime \prime+p(t) x \prime+q(t) x=0 \\
t^{2} x \prime \prime+t(t p(t)) x \prime+t^{2} q(t) x=0
\end{gathered}
$$

If it has a regular singular point at $t=0$, then we can write out

$$
\begin{aligned}
& t p(t)=\sum_{j=0}^{\infty} p_{j} t^{j} \\
& t^{2} q(t)=\sum_{j=0}^{\infty} q_{j} t^{j}
\end{aligned}
$$

p_{j} and q_{j} are known constants for us
We choose the Frobenius ansatz

$$
x(t)=t^{r} \sum_{k=0}^{\infty} a_{k} t^{k} \quad a_{0} \neq 0
$$

Accordingly,
$x^{\prime}(t)=\sum_{k=0}^{\infty}(r+k) a_{k} t^{r+k-1}$
$x^{\prime \prime}(t)=\sum_{k=0}^{\infty}(r+k)(r+k-1) a_{k} t^{r+k-2}$
Plug back into the equations we then get

$$
\left(r(r-1)+p_{0} r+q_{0}\right) a_{0}=0
$$

$\left((r+m)(r+m-1)+q_{0}+(r+m) p_{0}\right) a_{m}++\sum_{k=0}^{m-1}\left(q_{m-k}+(r+k) p_{m-k}\right) a_{k}=0 \quad m \geq 1$

Setting

$$
F(x):=x(x-1)+p_{0} x+q_{0}
$$

We get the indicial equation and recurrence equations to solve for a_{k}

$$
\begin{aligned}
F(r) & =0 \\
a_{m} F(r+m) & =-\sum_{k=0}^{m-1}\left(q_{m-k}+(r+k) p_{m-k}\right) a_{k}, \quad m \geq 1
\end{aligned}
$$

With the recurrence equations, you can usually generate out a easier recurrence equation.
For good and different r_{i} solved by the indical equation, llus some assumed initial values for a_{0}, a_{1}, \ldots, we are possible to solve for all a_{k}.

If everything goes fine, with $r_{1} \neq r_{2}$ are two GOOD solutions, you get two INDEPENDENT solutions.

5.2 Find a Second Independent Solution

5.2.1 Problem

But things can go wrong if $r_{1}=r_{2}+N, N \in \mathbb{N}$

- $r_{1}=r_{2}$: then need further work to obtain another solution
- $r_{1}=r_{2}+N, N \in \mathbb{N}^{+}$: then though r_{1} gives a solution, for r_{2}, due to $F\left(r_{2}+N\right)=F\left(r_{1}\right)=0$,
- if the right-side of the recurrence equation vanishes for $F\left(r_{2}+m\right)=F\left(r_{2}+N\right)$, then a_{N} is arbitrary, by setting a_{N} as zero when dealing with r_{1} (but you may not be able to do this), and as an arbitrary non-zero number when dealing with r_{2}, we may further find a second independent solution. Though we can also use another general method
- if the right-side of the recurrence equation doesn't vanish, need further work to obtain another solution

5.2.2 One Possible Solution

The recurrence equations can give a relationship $a_{k}(r)$, where you can view a_{k} as a function of r . Then we have

$$
x_{2}(t)=\left.\frac{\partial}{\partial r}\left(t^{r} \sum_{k=0}^{\infty} a_{k}(r) t^{k}\right)\right|_{r=r_{2}}=c \cdot x_{1}(t) \ln t+t^{r_{2}} \sum_{k=0}^{\infty} a_{k}^{\prime}\left(r_{2}\right) t^{k}
$$

where the constant $c \in R$ may vanish. If $r_{1}=r_{2}$, then $c=1$.
And a tricky way to find $a_{2 k}^{\prime}\left(r_{2}\right)$ is to use

$$
\frac{a_{2 k}^{\prime}(r)}{a_{2 k}(r)}=\frac{d}{d r} \ln \left|a_{2 k}(r)\right|
$$

What you should notice: as we will see in Bessel functions, this method don't always work(why?), but you can get $y_{2}(x)$ by

- use reduction of order
- view the above above equation as a new "ansatz"

Exercise 3:

Find the general solution for

$$
t(t-1) y^{\prime \prime}+(3 t-1) y^{\prime}+y=0
$$

6 Bessel Equations of Order v

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-v^{2}\right) y=0
$$

Having a regular singular point at 0 .
The Method of Frobenius can be applied.

6.1 Find the Indical and Recurrence Equations

Choose the Frobenius ansatz

$$
x(t)=t^{r} \sum_{k=0}^{\infty} a_{k} t^{k} \quad a_{0} \neq 0
$$

Besides,

$$
\begin{gathered}
x p(x)=1, \quad p_{0}=1 \\
x^{2} q(x)=x^{2}-v^{2}, \quad q_{0}=-v^{2}, \quad q_{2}=1
\end{gathered}
$$

Setting

$$
F(x):=x(x-1)+p_{0} x+q_{0}=x^{2}-v^{2}
$$

We get the indicial equation and recurrence equations

$$
\begin{aligned}
F(r) & =r^{2}-v^{2}=0 \\
a_{m} F(r+m) & =-\sum_{k=0}^{m-1}\left(q_{m-k}+(r+k) p_{m-k}\right) a_{k}, \quad m \geq 1
\end{aligned}
$$

Which gives us

$$
\begin{aligned}
& r^{2}-v^{2}=0 \\
& a_{1}\left((r+1)^{2}-v^{2}\right)=0 \\
& a_{m}=-\frac{a_{m-2}}{(m+r+v)(m+r-v)}, \quad m \geq 2
\end{aligned}
$$

It obviously turns out $r_{1}=v$ and $r_{2}=-v$.
If $r_{1}-r_{2}=2 v \notin \mathbb{N}$, then r_{1} and r_{2} give two independent solutions.
But for Bessel Equations, the condition is slightly less strict:
If $v \notin \mathbb{N}$, then r_{1} and r_{2} give two independent solutions.

6.2 Find the First Independent Solution

6.2.1 Find the First Independent Solution with the Larger r_{1}

With the $\operatorname{LARGER} r_{1}=v$, we have

$$
\begin{aligned}
& a_{1}\left((v+1)^{2}-v^{2}\right)=0 \\
& a_{m}=-\frac{a_{m-2}}{(m+2 v) m}, \quad m \geq 2
\end{aligned}
$$

So $a_{1}=a_{3}=a_{5}=\cdots=0$ and

$$
a_{2 k}=\frac{(-1)^{k} a_{0}}{2^{2 k} k!(1+v)(2+v) \cdots(k+v)}
$$

6.2.2 The Bessel Function of the First Kind

Recall Euler Gamma function's property:

$$
\Gamma(s+1)=s \Gamma(s)
$$

So it gives

$$
(1+v)(2+v) \cdots(k+v)=\frac{\Gamma(k+1+v)}{\Gamma(1+v)}
$$

And by setting $a_{0}=\frac{2^{-v}}{\Gamma(1+v)}$, we will have the first independent solution be the Bessel function of the first kind of order v

$$
J_{v}(x)=\left(\frac{x}{2}\right)^{v} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!\Gamma(k+1+v)}\left(\frac{x}{2}\right)^{2 k}
$$

Take $v=1$ as example, we have

$$
J_{1}(x)=\frac{x}{2} \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k}}{2^{2 k}(k+1)!k!}
$$

6.3 Find the Second Independent Solution ($v \notin \mathbb{N}$)

Starting from if $2 v$ is not an integer, with the SMAIIER $r_{2}=-v$, we have

$$
\begin{aligned}
& a_{1}\left((v-1)^{2}-v^{2}\right)=0, \quad a_{1}(2 v-1)=0 \\
& a_{m}=-\frac{a_{m-2}}{(m-2 v) m}, \quad m \geq 2
\end{aligned}
$$

We have $a_{1}=a_{3}=a_{5}=\cdots=0$ and

$$
a_{2 k}=\frac{(-1)^{k} a_{0}}{2^{2 k} k!(1-v)(2-v) \cdots(n-v)}
$$

Similarly,

$$
(1-v)(2-v) \cdots(k-v)=\frac{\Gamma(k+1-v)}{\Gamma(1-v)}
$$

And by setting $a_{0}=\frac{2^{-v}}{\Gamma(1+v)}$, the second independent solution will be the Bessel function of the first kind of negative order $-v$

$$
J_{-v}(x)=\left(\frac{x}{2}\right)^{-v} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!\Gamma(k+1-v)}\left(\frac{x}{2}\right)^{2 k}
$$

Then the general solution is

$$
y(x)=C_{1} J_{v}(x)+C_{2} J_{-v}(x)
$$

But actually, If $2 v$ is an odd integer, which means v is not an integer, the above results also holds.
And the combined conclusion is if v is not an integer, the above results will hold.

6.3.1 Another Example: $v=\frac{1}{2}$

Recall what you have seen in class with $v=\frac{1}{2}$, you are "lucky" enough to find a second independent solution directly with $r_{2}=-\frac{1}{2}$. (Exactly the case where $2 v \in \mathbb{N}$ but $v \notin \mathbb{N}$!)

Which is in slide 533, and there actually exsits a small typo.
You use $r_{1}=\frac{1}{2}$ to get the Bessel function of the first kind of order $1 / 2 J_{1 / 2}=\sqrt{\frac{2}{\pi t}} \sin t$ and use $r_{2}=-\frac{1}{2}$ to get the Bessel function of the second kind of order $1 / 2 Y_{1 / 2}(t)=\sqrt{\frac{2}{\pi t}} \cos t$ (Notice the minus sign!). Actually,

$$
\begin{aligned}
J_{\frac{1}{2}}(x) & =Y_{-\frac{1}{2}}(x)
\end{aligned}=\sqrt{\frac{2}{\pi x}} \sin (x), ~=-Y_{\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \cos (x)
$$

Exercise 4:

SAMPLE Ex4

6.4 Find the Second Independent Solution ($v \in \mathbb{N}$)

6.4.1 Reduction of Order

Set $y_{2}(x)=c(x) \cdot J_{\nu}(x)$, then

$$
\begin{aligned}
& x^{2} y_{2}^{\prime \prime}+x y_{2}^{\prime}+\left(x^{2}-\nu^{2}\right) y_{2}=0 \\
\Rightarrow & x^{2}\left(c^{\prime \prime}(x) J_{\nu}(x)+2 c^{\prime}(x) J_{\nu}^{\prime}(x)+c(x) J_{\nu}^{\prime \prime}(x)\right) \\
& +x\left(c^{\prime}(x) J_{\nu}(x)+c(x) J_{\nu}(x)\right)+\left(x^{2}-\nu^{2}\right) c(x) \cdot J_{\nu}(x)=0 \\
\Rightarrow & x^{2} J_{\nu}(x) c^{\prime \prime}(x)+\left(2 x^{2} J_{\nu}^{\prime}(x)+x J_{\nu}(x)\right) c^{\prime}(x)=0 \\
\Rightarrow & \ln \left|c^{\prime}(x)\right|=\left(-2 \ln \left|J_{\nu}(x)\right|-\ln |x|\right) \\
\Rightarrow & c^{\prime}(x)=\frac{1}{x \cdot J_{\nu}^{2}(x)} \\
\Rightarrow & c(x)=\int \frac{d x}{x \cdot J_{\nu}^{2}(x)}
\end{aligned}
$$

So a second independent solution is given as

$$
y_{2}(x)=J_{\nu}(x) \int \frac{d x}{x \cdot J_{\nu}^{2}(x)}
$$

6.4.2 The Second Method only for $v=0$

$$
\begin{gathered}
x_{2}(t)=\left.\frac{\partial}{\partial r}\left(t^{r} \sum_{k=0}^{\infty} a_{k}(r) t^{k}\right)\right|_{r=r_{2}}=c \cdot x_{1}(t) \ln t+t^{r_{2}} \sum_{k=0}^{\infty} a_{k}^{\prime}\left(r_{2}\right) t^{k} \\
\frac{a_{2 k}^{\prime}(r)}{a_{2 k}(r)}=\frac{d}{d r} \ln \left|a_{2 k}(r)\right|
\end{gathered}
$$

Will fail except for $v=0$, because $\frac{\partial}{\partial r}\left(t^{r} \sum_{k=0}^{\infty} a_{k}(r) t^{k}\right)$ has no definition at $r=r_{2}$

6.4.3 The Third Method

Let's find these new constants in another way. Using the "ansatz"

$$
y_{2}(x)=a J_{v}(x) \ln x+x^{-v}\left[\sum_{k=0}^{\infty} c_{k} x^{k}\right], \quad x>0
$$

Computing $y_{2} \prime, y_{2} \prime \prime(x)$, substituting in the original Bessel Equation, and make use of $J_{v}(x)$ is a solution(as we have done by reduction of order), we can obtain all the constants a, c_{0}, c_{1}, \ldots

For example, if you try with order 1 , where you also choose $c_{2}=\frac{1}{2^{2}}$, you would get $c_{1}=c_{3}=\cdots=0$ and:

$$
c_{2 m}=\frac{(-1)^{m+1}\left(H_{m}+H_{m-1}\right)}{2^{2 m} m!(m-1)!}
$$

Where $H_{m}(x):=\sum_{i=1}^{m} \frac{1}{i}, H_{0}=0$, is the Harmonic Numbers. In conclusion:

$$
y_{2}(x)=-J_{1}(x) \ln x+\frac{1}{x}\left[1-\sum_{m=1}^{\infty} \frac{(-1)^{m}\left(H_{m}+H_{m-1}\right)}{2^{2 m} m!(m-1)!} x^{2 m}\right], \quad x>0
$$

6.4.4 The Bessel Function of the Second Kind

Actually the second independent solution of Bessel Equations can be a more beautiful form: the Bessel function of the second kind of order v, which is some linear combinition of $J_{v}(x)$ and a second independent solution $y_{2}(x)$ we find. In our specific case for $y_{2}(x)$ of order 1 , we set the Bessel function of the second kind of order 1 as

$$
Y_{1}(x)=\frac{2}{\pi}\left[-y_{2}(x)+(\gamma-\ln 2) J_{1}(x)\right]
$$

But, in practice, the Bessel function of the second kind of order v can be found from $J_{v}(x)$ and $J_{-v}(x)$:

$$
Y_{v}(x)=\frac{J_{v}(x) \cos \pi v-J_{-v}(x)}{\sin \pi v}
$$

And then the general solution can be written as

$$
y(x)=C_{1} J_{v}(x)+C_{2} Y_{v}(x)
$$

7 Transform Differential Equations to Bessel Equation

Key Take-away:

- $u=u(x)=\frac{y}{f(x)}, f$ is a known function

$$
\frac{d^{2} y}{d x^{2}}=\frac{d^{2}(f(x) u(x))}{d x^{2}}=\frac{d\left(f^{\prime}(x) u(x)+f(x) u^{\prime}(x)\right)}{d x}
$$

- $z=z(x), z$ is a known function

$$
\frac{d^{2} y}{d x^{2}}=\frac{d^{2} y}{d z^{2}}\left(\frac{d z}{d x}\right)^{2}+\frac{d y}{d z}\left(\frac{d^{2} z}{d x^{2}}\right)
$$

$7.1 x^{2} y^{\prime \prime}+x y^{\prime}+\left(a^{2} x^{2}-v^{2}\right) y=0$
(Omitted)Exercise 5:
Transform this equation to a Bessel equation of order v
$7.2 x^{2} y^{\prime \prime}+a x y^{\prime}+\left(x^{2}-v^{2}\right) y=0$
(Omitted)Exercise 6:
Transform this equation to a Bessel equation using the substitution $y(x)=x^{\frac{1-a}{2}} z(x)$. What's the order?
$7.3 y^{\prime \prime}-x y=0$
Exercise 7:

Show that the general solution of this equation can be expressed as
$y(x)=C_{1} \sqrt{x} J_{\frac{1}{3}}\left(\frac{2}{3} i x^{\frac{3}{2}}\right)+C_{2} \sqrt{x} J_{-\frac{1}{3}}\left(\frac{2}{3} i x^{\frac{3}{2}}\right)$

Exercise 8:

SAMPLE Ex5

