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1 SELF-CHECK

1 Self-check
1. Elementary Probability

2. Conditional Probability

3. Discrete Random Variables

4. Continuous Random Variables

5. Expectation, Variance and Moments

6. Meanings of and Relationship Between Distributions

7. Multivariate Random Variables

8. Transformation of Random Variables

9. Reliability

10. Samples and Data Visualization

11. Parameter Estimation

12. Interval Estimation
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2 ELEMENTARY PROBABILITY

2 Elementary Probability
2.1 Cardano’s Principle

Let A be a random outcome of an experiment that may proceed in various ways. Assume
each of these ways is equally likely. Then the probability P[A] of the outcome A is:

P [A] =
number of ways leading to outcomeA

total number of ways (the experiment can proceed)

2.2 Counting Ways for Events

Suppose a set A of n objects is given. From A:

1. choose k ordered objects: n!
(n−k)!

2. choose k unordered objects: n!
k!(n−k)!

3. partitioning A into k disjoint subsets A1, ..., Ak having n1, ..., nk elements:
n!

n1!...nk!

Understand: Order the total n objects, use clapboard to separate, consider repetition.

2.3 Axiomatic Approach

σ−Field

S is a non-empty set. A σ−field F on S is a set of subsets of S such that:

(i) ∅ ∈ F

(ii) if A ∈ F , then S\A ∈ F

(iii) if A1, A2, ... ∈ F is a finite or countable sequence of subsets, then the union
∪

k Ak ∈
F .

Probability Measures and Spaces

Let S be a sample space and F a σ−field on S. A probability measure (or probability
function or just probability) on S is a function such that:

P : F → [0, 1], A 7→ P [A]

3



2.3 Axiomatic Approach 2 ELEMENTARY PROBABILITY

(i) P[S]=1

(ii) For any set of events Ak ⊂ F such that Aj ∩ Ak = ∅ for j ̸= k ,

P

[∪
k

Ak

]
=
∑
k

P [Ak]

Then (S,F , P ) is called a probability space.

Almost Surely

A ∈ σ−field, and P[A] = 1.
This does not means A = S.

Properties of Probability

P[S] = 1
P[∅] = 0

P[S \ A] = 1−P[A]
P[A1 ∪ A2] = P[A1] + P[A2] − P[A1 ∩ A2]
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3 CONDITIONAL PROBABILITY

3 Conditional Probability
3.1 Definition

Given event A occurs, the probability for B to occur:

P [B|A] := P [A ∩B]

P [A]

3.2 Independence

Event A and event B are independent if:

P [A ∩B] = P [A] · P [B]

And then other properties:

P [B|A] = P [B], if P [A] ̸= 0

P [A|B] = P [A], if P [B] ̸= 0

3.3 Total Probability

P [B] =
n∑

k=1

P [B|Ak] · P [Ak]

3.4 Bayes’s Theorem

A1, ..., An ⊂ S and pairwise mutually exclusive;∪
nAn = S;

B ⊂ S and P [B] ̸= 0. Then:

P [Ak|B] =
P [B ∩ Ak]

P [B]
=

P [B|Ak] · P [Ak]∑n
j=1 P [B|Aj] · P [Aj]
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4 DISCRETE RANDOM VARIABLES

4 Discrete Random Variables
4.1 Definition

Let S be a sample space and Ω a countable subset of R. A discrete random variable is a
map

X : S → Ω

together with a function
fX : Ω → R

where

(i) fX(x) ≥ 0 for all x ∈ Ω

(ii)
∑

x∈Ω fX(x) = 1

We often say that a random variable is given by the pair (X , fX).

4.2 General Properties

1. fX = P [X = x]: probability density function(PDF).

2. FX(x) =
∑

y≤x fX(y): cumulative distribution function(CDF).

3. E[X] :=
∑

x∈Ω x · fX(x): expectation.

4. Var[X] := E [(X − E[X])2] = E[X2]− E[X]2: Variance.

5. mX(t) :=
∑∞

k=0

E[Xk]
k!

tk = E[etX ]: moment generating function (MGF).

4.3 Expectation

Definition
E[X] :=

∑
x∈Ω

x · fX(x)

Exists only if E[X] converges.

Properties

1. E[φ ◦X] =
∑

x∈Ω φ(x) · fX(x)
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4.4 Variance 4 DISCRETE RANDOM VARIABLES

2. c ∈ R, then E[c]=c, E[cX]=cE[X]

3. X, Y both be random variables, then E[X+Y]=E[X]+E[Y]

Comments:

1. Describe the location of the average value

2. Different from ”median”(or modes)

4.4 Variance

Definition
Var[X] := E

[
(X − E[X])2

]
= E[X2]− E[X]2

Standard deviation
σX =

√
V ar[X]

Properties

1. c ∈ R, then Var[c]=0, Var[cX]=c2Var[X]

2. V ar[X + Y ] = V ar[X] + V ar[Y ] + 2Cov[X,Y ]

Cov[X,Y ] = E[(X − µX)(Y − µY )] = E[XY ]− E[X]E[Y ]

4.5 Moment Generating Functions

Moments

nth (ordinary) moments of X: n=1,2,3,...

E[Xn]

nth central moments of X: n=3,4,5,...

E

[
(
X − µ

σ
)n
]

7



4.6 Summary of discrete distributions 4 DISCRETE RANDOM VARIABLES

MGF
mX(t) :=

∞∑
k=0

E
[
Xk
]

k!
tk = E[etX ]

Radius of convergence

ε > 0

Application
E
[
Xk
]
=

dkmX(t)

dtk

∣∣∣∣
t=0

4.6 Summary of discrete distributions
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4.6 Summary of discrete distributions 4 DISCRETE RANDOM VARIABLES

Bernoulli Distribution

Interpolation
Perform one trial. Only two possible outcomes. Probability for success is p, for failure is

q=1-p. x=1 means success, and x=0 means failure.

Definition
fX(x) =

{
1− p for x = 0
p for x = 1

Features

1. p is the parameter

2. E[X]=p

3. Var[X]=pq

Binomial Distribution

Interpolation
Perform n independent and identical Bernoulli trials with parameter p. X gives the total

number of success in n trials.

Definition
fX(x) =

(
n
x

)
px(1− p)n−x

Features

1. p, n are the parameters

2. FX(x) =
∑⌊x⌋

y=0

(
n
y

)
py(1− p)n−y

3. E[X]=np

4. Var[X]=npq

5. mX(t) = (q + pet)n, mX : R → R

Geometric Distribution

Interpolation
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4.6 Summary of discrete distributions 4 DISCRETE RANDOM VARIABLES

Perform a sequence of i.i.d. Bernoulli trials with parameter p, and stop until get one
success. X gives the total number of trials needed to obtain the first success.

Definition
fX(x) = (1− p)(x−1)p

Features

1. p is the parameter

2. F(x)=1− q⌊x⌋

3. E[X]=1
p

4. Var[X]= q
p2

5. mX(t) =
pet

1−qet
, mX : (−∞,− ln q) → R

Pascal Distribution

Interpolation
Perform a sequence of i.i.d. Bernoulli trials with parameter p, and get the rth success at

the xth trial.

Definition
fX(x) =

(
x− 1
r − 1

)
pr(1− p)x−r

Features

1. p, r are the parameters

2. E[X]= r
p

3. Var[X]= rq
p2

4. mX(t) =
(

pet

1−qet

)r
, mX : (−∞,− ln q) → R

Connection to the Geometric Distribution

1. The Pascal distribution is a generalization of the Geometric distribution. Stop until
get r success.

2. A random variable following the Pascal distribution with parameters r and p is the
sum of r independent geometric random variables with parameter p.
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4.6 Summary of discrete distributions 4 DISCRETE RANDOM VARIABLES

Negative Binomial Distribution

Interpolation
Perform a sequence of i.i.d. Bernoulli trials with parameter p, and get the rth success

after x failures. The same as get the rth success at the (x+ r)th trial.

Definition

fX(x) =

(
x+ r − 1
r − 1

)
pr(1− p)x =

(
−r
x

)
(−1)xpr(1− p)x

Features

1. p, r are the parameters

2. E[X]= r(1−p)
p

. Can you imagine why?

The Negative Binomial (
−r
x

)
=

(
r − 1 + x
r − 1

)
(−1)x

Poisson Distribution

Interpolation
In a continuous interval [a, b], a certain event occurs for totally x times.

Assumptions
1. Independence: If the intervals T1, T2 ⊂ [0, t] do not overlap (except perhaps at one

point), then the numbers of arrivals in these intervals are independent of each other.

2. Constant rate of arrivals.
Definition

fX(x) =
kxe−k

x!
x = 0, 1, 2, 3, ...

Features
1. k is the parameter. k = λt, where λ is the arrival rate and t is the length of the

interval [a, b].

2. E[X]=k

3. Var[X]=k

4. mX(t) = ek(e
t−1)
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4.6 Summary of discrete distributions 4 DISCRETE RANDOM VARIABLES

Approximate the Binomial Distribution
A binomial distribution with large n and small p, can be approximated by a Poisson dis-

tribution with k=np, where you make sure the expected value is the same.
Because when n → ∞, n · p = k:(

n
x

)
px(1− p)n−x =

kx

x!
e−k

Hypergeometric Distribution

Interpretation:
A total of N balls, r red and N − r black. Draw n balls out without putting back.

Assume r > n and N − r > n. The random variable X describes the number of red balls in
the n drawn balls.

Features:

1. N, r, n are the parameters

2. fX(x) =

 r
x

 N − r
n− x


 N

n


3. E[X]=n r

N

4. VarX = n r
N

N−r
N

N−n
N−1

Connection to the Bernoulli Distribution:
It is a sequence of identical but not independent Bernoulli trials. Each draw is a Bernoulli

trial with p = r
N

.
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5 CONTINUOUS RANDOM VARIABLES

5 Continuous Random Variables
5.1 Definition

Let S be a sample space. A continuous random variable is a map

X : S → R

together with a probability density function

fX : R → R

where

(i) fX(x) ≥ 0 for all x ∈ R

(ii)
∫∞
−∞ fX(x) dx = 1

5.2 General Properties

1. fX : probability density function(PDF). Notice in comparison to the discrete random
variables, now fX ̸= P [X = x]. P [X = x] = 0.

2. FX(x) =
∫ x

−∞ fX(y) dy: cumulative distribution function(CDF). And F ′
X(x) = fX(x)

holds.

3. E[X] :=
∫∞
−∞ x · fX(x) dx: expectation.

4. Var[X] := E [(X − E[X])2] = E[X2]− E[X]2: Variance.

5. mX(t) := E[etX ] =
∫∞
−∞ etxfX(x) dx: moment generating function (MGF).

5.3 Locations

1. The median Mx: P [X ⩽ Mx] = 0.5

2. The mean E[X]: The average value.

3. The mode x0: The location having the maximum fX (if there is a unique maximum
location).
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5.4 Memoryless 5 CONTINUOUS RANDOM VARIABLES

5.4 Memoryless

Definition
P [X > x+ s|X > x] = P [X > s]

Interpolation
Let’s observe the definition above. What do you notice?
P[X>x+s | X>x]=P[X>s] does not rely on ”x”. We can interpret as:
P[X>x+s | X>x] does not ”remember” that it is already with X>x.

5.5 Summary of continuous distributions
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5.5 Summary of continuous distributions 5 CONTINUOUS RANDOM VARIABLES

Exponential Distribution

Connection to the Poisson Distribution:
Start from the point of an arrival, the time for one successive arrival of a Poisson-

distributed random variable to occur is exponentially distributed with parameter β = λ.
(Recall: k = λt)

Figure 1: The exponential distribution

Definition:
fβ(x) =

{
βe−βx, x > 0
0, x ≤ 0

Features:

1. β is the parameter.

2. FX(x) = 1− e−βt

3. E[X]= 1
β

4. Var[X]= 1
β2

5. mX(t) = (1− t
β
)−1

6. Memoryless
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5.5 Summary of continuous distributions 5 CONTINUOUS RANDOM VARIABLES

Figure 2: The exponential distribution

Gamma Distribution

Connection to the Poisson Distribution
Start from the point of an arrival, the time for r successive arrivals of a Poisson-distributed

random variable to occur follows a gamma distribution with parameter α = r, β = λ.
(Recall: k = λt)
Connection to the Exponential Distribution

It’s a sum of i.i.d exponential Distributions.

Figure 3: The gamma distribution

Definition
fα,β(x) =

{ βα

Γ(α)
xα−1e−βx, x > 0

0, x ≤ 0

Features

1. α, β are the parameters.

2. FX(x) = 1− e−βt

3. E[X]=α
β

4. Var[X]= α
β2
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5.5 Summary of continuous distributions 5 CONTINUOUS RANDOM VARIABLES

5. mX(t) = (1− t
β
)−α, mX : (−∞, β) → R

6. Not memoryless

(a) The gamma distribution (b) The gamma function

Figure 4: Gamma

Euler Gamma Function

1. Γ(α) =
∫∞
0

zα−1e−zdz

2. Γ(1) = 1, Γ(α) = (α− 1)Γ(α− 1) for α > 1

3. n! = Γ(n+ 1), for n ∈ R

4. Γ(1
2
) =

√
π

5. Γ(2n+1
2

) = (2n−1)(2n−3)...1
2n

√
π

Chi-squared Distribution

Connection to the Gamma Distribution
It’s a special case of the gamma distribution, with α = γ

2
, β = 1

2
, where γ ∈ N

Connection to the Normal Distribution
The sum of γ independent standard normal distribution follows a chi-squared distribution

with γ degree of freedom.
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5.5 Summary of continuous distributions 5 CONTINUOUS RANDOM VARIABLES

Definition

fγ(x) =

{
1

Γ(γ/2)2
γ
2
xγ/2−1e−x/2, x > 0

0, x ≤ 0

Features:

1. γ is the parameter, the degree of freedom

2. FX(x) = 1− e−βt

3. E[χ2
γ]=γ

4. Var[χ2
γ]=2γ

5. mX(t) = (1− t
2
)−

γ
2 , mX : (−∞, 2) → R

Normal(GauB) Distribution

Definition
fX(x) =

1√
2πσ

e−((x−µ)/σ)2/2

Features

1. µ, δ are the parameters

2. E[X] = µ

3. Var[X] = δ2

4. mX(t) = eµt+σ2t2/2

5.
P [−σ < X − µ < σ] = 0.68
P [−2σ < X − µ < 2σ] = 0.95
P [−3σ < X − µ < 3σ] = 0.997

Standard Normal Distribution

Definition
Let X be a normally distributed random variable with mean µ and standard deviation δ.

Then Z = X−µ
δ

follows a standard normal distribution with mean 0 and variance 1.

fZ(z) =
1√
2π

e−z2/2

Features
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5.5 Summary of continuous distributions 5 CONTINUOUS RANDOM VARIABLES

1. E[Z] = 0

2. Var[Z] = 1

3. mZ(t) = et
2/2

CDF
Φ(z) :=

1√
2π

∫ z

−∞
e−t2/2dt =

1

2
erfc(− z√

2
)

Where we define:

erf(z) :=
2√
π

∫ z

0

e−t2dt, erfc(z) := 1− erf(z)

Connection to the Chi-square Distribution
A Chi-square distributed variable with γ degree of freedom, is the sum of r square of

standard normal distributed variables. Simply:

χ2
n =

n∑
i=1

Z2
i

Approximate the Binomial Distribution

P [X ≤ y] =

y∑
x=0

(
n
x

)
px(1− p)n−x ≈ Φ

(
y + 1/2− np√

np(1− p)

)

Be careful with the half-unit correction.

Weibull Distribution

Definition
f(x) =

{
αβxβ−1e−αxβ

, x > 0
0, otherwise α, β > 0

Features

1. E[X] = α−1/βΓ(1 + 1/β)

2. VarX = α−2/βΓ(1 + 2/β)− µ2

If fA follows Weibull Distribution

1. ϱA(t) = αβtβ−1

2. RA(t) = e−αtβ
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5.6 The Chebyshev Inequality 5 CONTINUOUS RANDOM VARIABLES

Connection to the Exponential Distribution
When β = 1, it is the exponential distribution.

Uniform Distribution

Definition
f(x) =

{
1

b−a
, a ≤ x ≤ b

0, otherwise
Features

1. F (x) =

{
x−a
b−a

, a ≤ x ≤ b

1, otherwise

2. E[X] = a+b
2

3. VarX = (b−a)2

12

4. mX(t) =
ebt−eat

t(b−a)

5.6 The Chebyshev Inequality

Theorem

Let c > 0 be any real number, and for k ∈ N− 0, then for any random variables:

P [|X| ≥ c] ≤
E
[
|X|k

]
ck

Application

In general, for any variables:

P [|X − µ| ≥ mσ] ≤ 1
m2

P [−mσ < X − µ < mσ] ≥ 1− 1
m2
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5.7 Transformation of Random Variables 5 CONTINUOUS RANDOM VARIABLES

5.7 Transformation of Random Variables

Theorem

Let X be a continuous random variable with density fX .
Let Y = φ ◦X , where φ : R → R is strictly monotonic and differentiable. The density

for Y is then given by

fY (y) = fX (φ−1(y)) ·
∣∣∣dφ−1(y)

dy

∣∣∣ for y ∈ ranφ

fY (y) = 0 for y /∈ ranφ

It is important to know how to prove.

Proof

Step 1: Find CDF FY (y).

FY (y) = P [φ(X) ≤ y]

= P
[
φ−1(φ(X)) ≥ φ−1(y)

]
= P

[
X ≥ φ−1(y)

]
= 1− P

[
X ≤ φ−1(y)

]
= 1− FX

(
φ−1(y)

)
Step 2: Find fY (y) = F ′

Y (y)

fY (y) = F ′
Y (y) = −fX

(
φ−1(y)

) dφ−1(y)

dy

= fX
(
φ−1(y)

)
·
∣∣∣∣dφ−1(y)

dy

∣∣∣∣
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6 RELATIONSHIPS OF DISTRIBUTIONS

6 Relationships of Distributions
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7 Exercise
Exercise1 Integration



7 EXERCISE

Sample2 Relationships
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7 EXERCISE

Sample4 Conditional Probability
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8 TIPS FOR MID

8 Tips for Mid

1. Know how to integration.

2. Understand why and when you can use the methods and theorems.

3. Understand how to calculate and use E[X], Var[X], MGF, CDF, ... for arbitrary
distributions, instead of memorizing or searching them for common distributions.

4. Understand the meaning and relationships between different distributions, instead of
memorizing these equations for a single distribution.

5. Understand the parts related to the conditional probability.

6. Prove any statement not proved in class or in homeworks. Although probably you do
not need such statements.

Wish you good luck in all of your midterm exams!
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