VE401 RECITATION CLASS NOTE

Midterm Part1

Chen Siyi siyi.chen_chicy@sjtu.edu.cn

Contents

1	Self-check	2		
2	Elementary Probability 2.1 Cardano's Principle 2.2 Counting Ways for Events 2.3 Axiomatic Approach	3 3 3 3		
3	Conditional Probability 3.1 Definition 3.2 Independence 3.3 Total Probability 3.4 Bayes's Theorem	5 5 5 5 5		
4	Discrete Random Variables4.1Definition	6 6 6 7 7 8		
5	Continuous Random Variables 5.1 Definition	13 13 13 13 14 14 20 21		
6	Relationships of Distributions	22		
7	Exercise	23		
8	8 Tips for Mid			

1 Self-check

- 1. Elementary Probability
- 2. Conditional Probability
- 3. Discrete Random Variables
- 4. Continuous Random Variables
- 5. Expectation, Variance and Moments
- 6. Meanings of and Relationship Between Distributions
- 7. Multivariate Random Variables
- 8. Transformation of Random Variables
- 9. Reliability
- 10. Samples and Data Visualization
- 11. Parameter Estimation
- 12. Interval Estimation

2 Elementary Probability

2.1 Cardano's Principle

Let A be a random outcome of an experiment that may proceed in various ways. Assume each of these ways is **equally likely.** Then the probability P[A] of the outcome A is:

 $P[A] = \frac{number \, of \, ways \, leading \, to \, outcome \, A}{total \, number \, of \, ways \, (the \, experiment \, can \, proceed)}$

2.2 Counting Ways for Events

Suppose a set A of n objects is given. From A:

- 1. choose k ordered objects: $\frac{n!}{(n-k)!}$
- 2. choose k unordered objects: $\frac{n!}{k!(n-k)!}$
- 3. partitioning A into k disjoint subsets $A_1, ..., A_k$ having $n_1, ..., n_k$ elements: $\frac{n!}{n_1!...n_k!}$

Understand: Order the total n objects, use clapboard to separate, consider repetition.

2.3 Axiomatic Approach

$\sigma{-}\mathbf{Field}$

S is a non-empty set. A σ -field \mathcal{F} on S is a set of subsets of S such that:

- (i) $\emptyset \in \mathscr{F}$
- (ii) if $A \in \mathscr{F}$, then $S \setminus A \in \mathscr{F}$
- (iii) if $A_1, A_2, \ldots \in \mathscr{F}$ is a finite or countable sequence of subsets, then the union $\bigcup_k A_k \in \mathscr{F}$.

Probability Measures and Spaces

Let S be a sample space and \mathscr{F} a σ -field on S. A **probability measure** (or **probability** function or just **probability**) on S is a function such that:

$$P: \mathscr{F} \to [0,1], \quad A \mapsto P[A]$$

- (i) P[S]=1
- (ii) For any set of events $A_k \subset \mathscr{F}$ such that $A_j \cap A_k = \emptyset$ for $j \neq k$,

$$P\left[\bigcup_{k} A_{k}\right] = \sum_{k} P[A_{k}]$$

Then (S, \mathscr{F}, P) is called a **probability space**.

Almost Surely

 $A \in \sigma$ -field, and P[A] = 1. This does not means A = S.

Properties of Probability

$$P[S] = 1$$

$$P[\emptyset] = 0$$

$$P[S \setminus A] = 1 - P[A]$$

$$P[A_1 \cup A_2] = P[A_1] + P[A_2] - P[A_1 \cap A_2]$$

3 Conditional Probability

3.1 Definition

Given event A occurs, the probability for B to occur:

$$P[B|A] := \frac{P[A \cap B]}{P[A]}$$

3.2 Independence

Event A and event B are independent if:

$$P[A \cap B] = P[A] \cdot P[B]$$

And then other properties:

$$P[B|A] = P[B], if P[A] \neq 0$$
$$P[A|B] = P[A], if P[B] \neq 0$$

3.3 Total Probability

$$P[B] = \sum_{k=1}^{n} P[B|A_k] \cdot P[A_k]$$

3.4 Bayes's Theorem

$$A_1, ..., A_n \subset S$$
 and pairwise mutually exclusive;
 $\bigcup_n A_n = S;$
 $B \subset S$ and $P[B] \neq 0$. Then:
 $P[A_k|B] = \frac{P[B \cap A_k]}{P[B]} = \frac{P[B|A_k] \cdot P[A_k]}{\sum_{j=1}^n P[B|A_j] \cdot P[A_j]}$

4 Discrete Random Variables

4.1 Definition

Let S be a sample space and Ω a countable subset of R. A discrete random variable is a map $X:S\to \Omega$

 $f_X: \Omega \to \mathbb{R}$

together with a function

where

(i) $f_X(x) \ge 0$ for all $x \in \Omega$

(ii)
$$\sum_{x \in \Omega} f_X(x) = 1$$

We often say that a random variable is given by the pair (X, f_X) .

4.2 General Properties

- 1. $f_X = P[X = x]$: probability density function(PDF).
- 2. $F_X(x) = \sum_{y \le x} f_X(y)$: cumulative distribution function(CDF).
- 3. $E[X] := \sum_{x \in \Omega} x \cdot f_X(x)$: expectation.

4.
$$\operatorname{Var}[X] := \operatorname{E}[(X - \operatorname{E}[X])^2] = E[X^2] - E[X]^2$$
: Variance.

5.
$$m_X(t) := \sum_{k=0}^{\infty} \frac{E[X^k]}{k!} t^k = E[e^{tX}]$$
: moment generating function (MGF).

4.3 Expectation

Definition

$$\mathbf{E}[X] := \sum_{x \in \Omega} x \cdot f_X(x)$$

Exists only if E[X] converges.

Properties

1. $E[\varphi \circ X] = \sum_{x \in \Omega} \varphi(x) \cdot f_X(x)$

- 2. $c \in \mathbb{R}$, then E[c]=c, E[cX]=cE[X]
- 3. X, Y both be random variables, then E[X+Y]=E[X]+E[Y]

Comments:

- 1. Describe the location of the average value
- 2. Different from "median" (or modes)

4.4 Variance

Definition

$$\operatorname{Var}[X] := \operatorname{E}\left[(X - \operatorname{E}[X])^2 \right] = E[X^2] - E[X]^2$$

Standard deviation

$$\sigma_X = \sqrt{Var[X]}$$

Properties

- 1. $c \in \mathbb{R}$, then Var[c]=0, Var[cX]= c^2 Var[X]
- 2. Var[X + Y] = Var[X] + Var[Y] + 2Cov[X, Y] $Cov[X, Y] = E[(X - \mu_X)(Y - \mu_Y)] = E[XY] - E[X]E[Y]$

4.5 Moment Generating Functions

Moments

 n_{th} (ordinary) moments of X: n=1,2,3,...

 $E[X^n]$

 n_{th} central moments of X: n=3,4,5,...

$$E\left[\left(\frac{X-\mu}{\sigma}\right)^n\right]$$

MGF

$$m_X(t) := \sum_{k=0}^{\infty} \frac{E\left[X^k\right]}{k!} t^k = E[e^{tX}]$$

Radius of convergence

 $\varepsilon > 0$

Application

$$\mathbf{E}\left[X^k\right] = \left.\frac{d^k m_X(t)}{dt^k}\right|_{t=0}$$

4.6 Summary of discrete distributions

distribution pmf	mean	variance	mgf
Poisson $e^{-\lambda} \frac{\lambda^x}{x!}$	λ	λ	$e^{-\lambda+\lambda e^t}$
Binomial $\binom{n}{x}\pi^x(1-\pi)^{n-x}$	$n\pi$	$n\pi(1-\pi)$	$(\pi e^t + 1 - \pi)^n$
Geometric ⁽¹⁾ $\pi(1-\pi)^x$	$rac{1}{\pi}-1$	$\frac{1-\pi}{\pi^2}$	$\frac{\pi}{1-(1-\pi)e^t}$
$egin{array}{l} { m Negative Binomial}^{(1)}\ {{s+x-1}\choose x}\pi^s(1-\pi)^x \end{array}$	$rac{s}{\pi}-s$	$\frac{s(1-\pi)}{\pi^2}$	$\left[\frac{\pi}{1-(1-\pi)e^t}\right]^s$
$\begin{array}{c} \text{Hypergeometric}^{(2)} \\ \frac{\binom{m}{x}\binom{n}{k-x}}{\binom{m+n}{k}} \end{array}$	$N\pi$	$N\pi(1-\pi)rac{N-k}{N-1}$	

Bernoulli Distribution

Interpolation

Perform one trial. Only two possible outcomes. Probability for success is p, for failure is q=1-p. x=1 means success, and x=0 means failure.

Definition

$$f_X(x) = \begin{cases} 1-p & \text{for } x = 0\\ p & \text{for } x = 1 \end{cases}$$

Features

1. p is the parameter

2.
$$E[X] = p$$

3. Var[X]=pq

Binomial Distribution

Interpolation

Perform n independent and identical Bernoulli trials with parameter p. X gives the total number of success in n trials.

Definition

$$f_X(x) = \binom{n}{x} p^x (1-p)^{n-x}$$

Features

1. p, n are the parameters

2.
$$F_X(x) = \sum_{y=0}^{\lfloor x \rfloor} {n \choose y} p^y (1-p)^{n-y}$$

- 3. E[X]=np
- 4. Var[X]=npq
- 5. $m_X(t) = (q + pe^t)^n, \quad m_X : \mathbb{R} \to \mathbb{R}$

Geometric Distribution

Interpolation

Perform a sequence of i.i.d. Bernoulli trials with parameter p, and stop until get one success. X gives the total number of trials needed to obtain the first success.

Definition

$$f_X(x) = (1-p)^{(x-1)}p$$

Features

- 1. p is the parameter
- 2. $F(x)=1-q^{\lfloor x \rfloor}$ 3. $E[X]=\frac{1}{p}$ 4. $Var[X]=\frac{q}{p^2}$ 5. $m_X(t) = \frac{pe^t}{1-qe^t}, \quad m_X: (-\infty, -\ln q) \to \mathbb{R}$

Pascal Distribution

Interpolation

Perform a sequence of i.i.d. Bernoulli trials with parameter p, and get the r^{th} success at the x^{th} trial.

Definition

$$f_X(x) = \begin{pmatrix} x-1\\r-1 \end{pmatrix} p^r (1-p)^{x-r}$$

Features

1. p, r are the parameters

2.
$$E[X] = \frac{r}{p}$$

3.
$$\operatorname{Var}[X] = \frac{rq}{p^2}$$

4.
$$m_X(t) = \left(\frac{pe^t}{1-qe^t}\right)^r, \quad m_X: (-\infty, -\ln q) \to \mathbb{R}$$

Connection to the Geometric Distribution

- 1. The Pascal distribution is a generalization of the Geometric distribution. Stop until get r success.
- 2. A random variable following the Pascal distribution with parameters r and p is the sum of r independent geometric random variables with parameter p.

Negative Binomial Distribution

Interpolation

Perform a sequence of i.i.d. Bernoulli trials with parameter p, and get the r^{th} success after x failures. The same as get the r^{th} success at the $(x + r)^{th}$ trial.

Definition

$$f_X(x) = \begin{pmatrix} x+r-1 \\ r-1 \end{pmatrix} p^r (1-p)^x = \begin{pmatrix} -r \\ x \end{pmatrix} (-1)^x p^r (1-p)^x$$

Features

1. p, r are the parameters

2. $E[X] = \frac{r(1-p)}{p}$. Can you imagine why?

The Negative Binomial

$$\begin{pmatrix} -r \\ x \end{pmatrix} = \begin{pmatrix} r-1+x \\ r-1 \end{pmatrix} (-1)^x$$

Poisson Distribution

Interpolation

In a continuous interval [a, b], a certain event occurs for totally x times.

Assumptions

- 1. Independence: If the intervals $T_1, T_2 \subset [0, t]$ do not overlap (except perhaps at one point), then the numbers of arrivals in these intervals are independent of each other.
- 2. Constant rate of arrivals.

Definition

$$f_X(x) = \frac{k^x e^{-k}}{x!}$$

x = 0, 1, 2, 3, ...

Features

- 1. k is the parameter. $k = \lambda t$, where λ is the arrival rate and t is the length of the interval [a, b].
- 2. E[X]=k
- 3. Var[X]=k
- 4. $m_X(t) = e^{k(e^t 1)}$

Approximate the Binomial Distribution <u>A binomial distribution with large n and small p</u>, can be approximated by a Poisson distribution with <u>k=np</u>, where you make sure the expected value is the same. Because when $n \to \infty$, $n \cdot p = k$: $\binom{n}{x} p^x (1-p)^{n-x} = \frac{k^x}{x!} e^{-k}$

Hypergeometric Distribution

Interpretation:

A total of N balls, r red and N - r black. Draw n balls out without putting back. Assume r > n and N - r > n. The random variable X describes the number of red balls in the n drawn balls.

Features:

1. N, r, n are the parameters

2.
$$f_X(x) = \frac{\binom{r}{x}\binom{N-r}{n-x}}{\binom{N}{n}}$$

3.
$$E[X] = n \frac{r}{N}$$

4. Var
$$X = n \frac{r}{N} \frac{N-r}{N} \frac{N-n}{N-1}$$

Connection to the Bernoulli Distribution:

It is a sequence of identical but not independent Bernoulli trials. Each draw is a Bernoulli trial with $p = \frac{r}{N}$.

5 Continuous Random Variables

5.1 Definition

Let S be a sample space. A continuous random variable is a map

 $X:S\to\mathbb{R}$

together with a probability **density** function

 $f_X : \mathbb{R} \to \mathbb{R}$

where

(i) $f_X(x) \ge 0$ for all $x \in \mathbb{R}$

(ii)
$$\int_{-\infty}^{\infty} f_X(x) \, \mathrm{d}x = 1$$

5.2 General Properties

- 1. f_X : probability density function(PDF). Notice in comparison to the discrete random variables, now $f_X \neq P[X = x]$. P[X = x] = 0.
- 2. $F_X(x) = \int_{-\infty}^x f_X(y) \, dy$: cumulative distribution function(CDF). And $F'_X(x) = f_X(x)$ holds.
- 3. $E[X] := \int_{-\infty}^{\infty} x \cdot f_X(x) dx$: expectation.
- 4. $\operatorname{Var}[X] := \operatorname{E}[(X \operatorname{E}[X])^2] = E[X^2] E[X]^2$: Variance.
- 5. $m_X(t) := E[e^{tX}] = \int_{-\infty}^{\infty} e^{tx} f_X(x) \, \mathrm{d}x$: moment generating function (MGF).

5.3 Locations

- 1. The median M_x : $P[X \leq M_x] = 0.5$
- 2. The mean E[X]: The average value.
- 3. The mode x_0 : The location having the maximum f_X (if there is a unique maximum location).

5.4 Memoryless

Definition

$$P[X > x + s | X > x] = P[X > s]$$

Interpolation

Let's observe the definition above. What do you notice? P[X>x+s | X>x]=P[X>s] does not rely on "x". We can interpret as: P[X>x+s | X>x] does not "remember" that it is already with X>x.

5.5 Summary of continuous distributions

distribution pdf	mean	variance	mgf		
$ \begin{array}{c c} \text{Uniform} \\ & \\ \begin{cases} \frac{1}{b-a} & \text{if } x \in [a,b] \ , \\ 0 & \text{otherwise} \end{cases} \end{array} $	$\frac{b+a}{2}$	$\frac{(b-a)^2}{12}$	$\begin{cases} \frac{e^{tb} - e^{ta}}{t(b-a)} & \text{if } t \neq 0 \\ 1 & \text{if } t = 0. \end{cases}$		
Standard normal $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}z^2}$	0	1	$e^{t^2/2}$		
Normal $\frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$	μ	σ^2	$e^{\mu t + \sigma^2 t^2/2}$		
Exponential			λ		
$\lambda e^{-\lambda x}$	$1/\lambda$	$1/\lambda^2$	$\frac{\lambda}{\lambda-t}$		
Gamma		. 0	$\begin{bmatrix} \lambda \end{bmatrix}^{\alpha}$		
$\frac{\lambda}{\Gamma(\alpha)}x^{\alpha-1}e^{-\lambda x}$	$lpha/\lambda$	$lpha/\lambda^2$	$\left\lfloor \frac{\lambda}{\lambda - t} \right\rfloor$		
$\frac{\alpha}{\beta^{\alpha}}x^{\alpha-1}e^{-(x/\beta)^{\alpha}}$	$\beta\Gamma(1+rac{1}{lpha})$	$eta^2 \left[\Gamma(1+rac{2}{lpha}) - ight.$	$\left[\Gamma(1+\frac{1}{lpha})\right]^2$		
Beta $\alpha\beta$					
$rac{\Gamma(lpha+eta)}{\Gamma(lpha)\Gamma(eta)}x^{lpha-1}(1-x)^{eta-1}$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta)}$	$\overline{\beta+1)}$		

Exponential Distribution

Definition:

$$f_{\beta}(x) = \begin{cases} \beta e^{-\beta x}, & x > 0\\ 0, & x \le 0 \end{cases}$$

Features:

1. β is the parameter.

2.
$$F_X(x) = 1 - e^{-\beta t}$$

- 3. $E[X] = \frac{1}{\beta}$
- 4. Var[X]= $\frac{1}{\beta^2}$
- 5. $m_X(t) = (1 \frac{t}{\beta})^{-1}$
- 6. Memoryless

Figure 2: The exponential distribution

Gamma Distribution

Definition

$$f_{\alpha,\beta}(x) = \begin{cases} \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}, & x > 0\\ 0, & x \le 0 \end{cases}$$

Features

1. α , β are the parameters.

2.
$$F_X(x) = 1 - e^{-\beta x}$$

- 3. $E[X] = \frac{\alpha}{\beta}$
- 4. Var[X]= $\frac{\alpha}{\beta^2}$

5.
$$m_X(t) = (1 - \frac{t}{\beta})^{-\alpha}, \quad m_X : (-\infty, \beta) \to \mathbb{R}$$

6. Not memoryless

Euler Gamma Function 1. $\Gamma(\alpha) = \int_0^\infty z^{\alpha-1} e^{-z} dz$ 2. $\Gamma(1) = 1, \ \Gamma(\alpha) = (\alpha - 1)\Gamma(\alpha - 1) \text{ for } \alpha > 1$ 3. $n! = \Gamma(n + 1), \text{ for } n \in \mathbb{R}$ 4. $\Gamma(\frac{1}{2}) = \sqrt{\pi}$ 5. $\Gamma(\frac{2n+1}{2}) = \frac{(2n-1)(2n-3)...1}{2^n}\sqrt{\pi}$

Chi-squared Distribution

Connection to the Gamma Distribution It's a special case of the gamma distribution, with $\alpha = \frac{\gamma}{2}$, $\beta = \frac{1}{2}$, where $\gamma \in \mathbb{N}$

Connection to the Normal Distribution

The sum of γ independent standard normal distribution follows a chi-squared distribution with γ degree of freedom.

Definition

$$f_{\gamma}(x) = \begin{cases} \frac{1}{\Gamma(\gamma/2)2^{\frac{\gamma}{2}}} x^{\gamma/2 - 1} e^{-x/2}, & x > 0\\ 0, & x \le 0 \end{cases}$$

Features:

1. γ is the parameter, the degree of freedom

2.
$$F_X(x) = 1 - e^{-\beta t}$$

3. $\mathbb{E}[\chi_{\gamma}^2] = \gamma$
4. $\operatorname{Var}[\chi_{\gamma}^2] = 2\gamma$
5. $m_X(t) = (1 - \frac{t}{2})^{-\frac{\gamma}{2}}, \quad m_X : (-\infty, 2) \to \mathbb{R}$

Normal(Gau \mathcal{B}) Distribution

Definition $f_X(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-((x-\mu)/\sigma)^2/2}$ Features 1. μ , δ are the parameters 2. $E[X] = \mu$ 3. $Var[X] = \delta^2$ 4. $m_X(t) = e^{\mu t + \sigma^2 t^2/2}$ 5. $P[-\sigma < X - \mu < \sigma] = 0.68$ $P[-2\sigma < X - \mu < 2\sigma] = 0.95$ $P[-3\sigma < X - \mu < 3\sigma] = 0.997$

Standard Normal Distribution

Definition

Let X be a normally distributed random variable with mean μ and standard deviation δ . Then $Z = \frac{X-\mu}{\delta}$ follows a standard normal distribution with mean 0 and variance 1.

$$f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}$$

Features

- 1. E[Z] = 0
- 2. Var[Z] = 1
- 3. $m_Z(t) = e^{t^2/2}$

CDF

$$\Phi(z) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-t^{2}/2} dt = \frac{1}{2} erfc(-\frac{z}{\sqrt{2}})$$

Where we define:

$$\operatorname{erf}(z) := \frac{2}{\sqrt{\pi}} \int_0^z e^{-t^2} dt, \quad \operatorname{erfc}(z) := 1 - \operatorname{erf}(z)$$

Connection to the Chi-square Distribution

A Chi-square distributed variable with γ degree of freedom, is the sum of r square of standard normal distributed variables. Simply:

$$\chi_n^2 = \sum_{i=1}^n Z_i^2$$

Approximate the Binomial Distribution

$$P[X \le y] = \sum_{x=0}^{y} \binom{n}{x} p^x (1-p)^{n-x} \approx \Phi\left(\frac{y+1/2-np}{\sqrt{np(1-p)}}\right)$$

Be careful with the half-unit correction.

Weibull Distribution

Definition

$$f(x) = \begin{cases} \alpha \beta x^{\beta-1} e^{-\alpha x^{\beta}}, & x > 0\\ 0, & \text{otherwise} \end{cases} \quad \alpha, \beta > 0$$

Features

1.
$$E[X] = \alpha^{-1/\beta} \Gamma(1 + 1/\beta)$$

2. Var $X = \alpha^{-2/\beta} \Gamma(1 + 2/\beta) - \mu^2$

If f_A follows Weibull Distribution

1.
$$\varrho_A(t) = \alpha \beta t^{\beta-1}$$

2.
$$R_A(t) = e^{-\alpha t^\beta}$$

Connection to the Exponential Distribution When $\beta = 1$, it is the exponential distribution.

Uniform Distribution

Definition

$$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b\\ 0, & \text{otherwise} \end{cases}$$

Features

1. $F(x) = \begin{cases} \frac{x-a}{b-a}, & a \le x \le b\\ 1, & \text{otherwise} \end{cases}$ 2. $E[X] = \frac{a+b}{2}$ 3. $Var X = \frac{(b-a)^2}{12}$ 4. $m_X(t) = \frac{e^{bt} - e^{at}}{t(b-a)}$

5.6 The Chebyshev Inequality

Theorem

Let c > 0 be any real number, and for $k \in \mathbb{N} - 0$, then for any random variables:

$$P[|X| \ge c] \le \frac{E\left[|X|^k\right]}{c^k}$$

Application

In general, for any variables:

$$\begin{split} P[|X - \mu| \geq m\sigma] &\leq \frac{1}{m^2} \\ P[-m\sigma < X - \mu < m\sigma] \geq 1 - \frac{1}{m^2} \end{split}$$

5.7 Transformation of Random Variables

Theorem

Let X be a continuous random variable with density f_X .

Let $Y=\varphi\circ X$, where $\varphi:\mathbb{R}\to\mathbb{R}$ is strictly monotonic and differentiable. The density for Y is then given by

$$f_Y(y) = f_X(\varphi^{-1}(y)) \cdot \left| \frac{d\varphi^{-1}(y)}{dy} \right| \quad \text{for } y \in \operatorname{ran} \varphi$$
$$f_Y(y) = 0 \quad \text{for } y \notin \operatorname{ran} \varphi$$

It is important to know how to prove.

Proof

Step 1: Find CDF $F_Y(y)$.

$$F_Y(y) = P[\varphi(X) \le y]$$

= $P\left[\varphi^{-1}(\varphi(X)) \ge \varphi^{-1}(y)\right]$
= $P\left[X \ge \varphi^{-1}(y)\right]$
= $1 - P\left[X \le \varphi^{-1}(y)\right]$
= $1 - F_X\left(\varphi^{-1}(y)\right)$

Step 2: Find $f_Y(y) = F'_Y(y)$

$$f_Y(y) = F'_Y(y) = -f_X\left(\varphi^{-1}(y)\right) \frac{d\varphi^{-1}(y)}{dy}$$
$$= f_X\left(\varphi^{-1}(y)\right) \cdot \left|\frac{d\varphi^{-1}(y)}{dy}\right|$$

6 Relationships of Distributions

7 Exercise

Exercise1 Integration

The distribution function of the speed (modulus of the velocity) V of a gas molecule is described by the Maxwell-Boltzmann law

$$f_V(v) = \begin{cases} \left(\frac{2}{\pi}\right)^{1/2} \left(\frac{m}{kT}\right)^{3/2} v^2 e^{-\frac{m}{kT}v^2/2} & v > 0\\ 0 & v \le 0 \end{cases}$$

where m > 0 is the mass of the molecule, T > 0 is its temperature and k > 0 is the Boltzmann constant.

- i) Find the mean and variance of V.
- ii) Find the mean of the kinetic energy $E = mV^2/2$.
- iii) Find the probability density f_E of E.

(3 + 2 + 2 Marks)

Solution. i) The mean of V is given by

$$\begin{split} \mathbf{E}[V] &= \int_{\mathbb{R}} v f_V(v) \, dv \\ &= \left(\frac{2}{\pi}\right)^{1/2} \left(\frac{m}{kT}\right)^{1/2} \int_0^\infty \frac{m}{kT} v^3 e^{-\frac{m}{kT}v^2/2} \, dv \\ &= 2 \left(\frac{2}{\pi}\right)^{1/2} \left(\frac{m}{kT}\right)^{1/2} \int_0^\infty v e^{-\frac{m}{kT}v^2/2} \, dv \\ &= 2 \left(\frac{2}{\pi}\right)^{1/2} \left(\frac{m}{kT}\right)^{-1/2} \left[-e^{-\frac{m}{kT}v^2/2}\right]_0^\infty \\ &= 2 \left(\frac{2kT}{m\pi}\right)^{1/2}. \end{split}$$

(1 Mark) Furthermore,

$$\begin{split} \mathbf{E}[V^2] &= \int_{\mathbb{R}} v^2 f_V(v) \, dv \\ &= \left(\frac{2}{\pi}\right)^{1/2} \left(\frac{m}{kT}\right)^{1/2} \int_0^\infty \frac{m}{kT} v^4 e^{-\frac{m}{kT}v^2/2} \, dv \\ &= 3 \left(\frac{2}{\pi}\right)^{1/2} \left(\frac{m}{kT}\right)^{1/2} \int_0^\infty v^2 e^{-\frac{m}{kT}v^2/2} \, dv \\ &= 3 \left(\frac{2}{\pi}\right)^{1/2} \left(\frac{m}{kT}\right)^{-1/2} \int_0^\infty e^{-\frac{m}{kT}v^2/2} \, dv. \end{split}$$

Setting $w = \sqrt{m/(kT)}v$, we have

$$E[V^2] = 6\left(\frac{m}{kT}\right)^{-1} \underbrace{\frac{1}{\sqrt{2\pi}} \int_0^\infty e^{-w^2/2} dw}_{=1/2} = \frac{3kT}{m}.$$

(1 Mark) It follows that

$$\operatorname{Var} V = \operatorname{E}[V^2] - \operatorname{E}[V]^2 = \frac{kT}{m} \left(3 - \frac{8}{\pi}\right)$$

(1 Mark)

ii) The expectation value of the kinetic energy is given by

$$E[E] = \frac{m}{2}E[V^2] = \frac{m}{2}\frac{3kT}{m} = \frac{3}{2}kT.$$

iii) Note that the function $\varphi \colon \mathbb{R} \to \mathbb{R}_+ \cup \{0\}$, $\varphi(v) = \frac{m}{2}v^2$ is not bijective, so we can't simply apply the theorem for transforming random variables from the lecture. Let $\varepsilon > 0$. Then

$$\begin{aligned} F_E(\varepsilon) &= P[E \le \varepsilon] = P\left[\frac{m}{2}V^2 \le \varepsilon\right] = P\left[-\sqrt{2\varepsilon/m} \le V \le \sqrt{2\varepsilon/m}\right] = \int_{-\sqrt{2\varepsilon/m}}^{\sqrt{2\varepsilon/m}} f_V(v) \, dv \\ &= \int_0^{\sqrt{2\varepsilon/m}} f_V(v) \, dx. \end{aligned}$$

(1/2 Mark) It follows that

$$f_E(\varepsilon) = F'_E(\varepsilon) = f_V(\sqrt{2\varepsilon/m}) \cdot \frac{1}{\sqrt{2m\varepsilon}}$$
$$= \left(\frac{2}{\pi}\right)^{1/2} \left(\frac{m}{kT}\right)^{3/2} \frac{2\varepsilon}{m} e^{-\frac{\varepsilon}{kT}} \cdot \frac{1}{\sqrt{2m\varepsilon}}$$
$$= \frac{2}{\sqrt{\pi}} (kT)^{-3/2} \sqrt{\varepsilon} e^{-\frac{\varepsilon}{kT}}$$

for $\varepsilon > 0$. (1 Mark) For $\varepsilon \leq 0$ we have

$$F_E(\varepsilon) = P[E \le \varepsilon] = P\left[\frac{m}{2}V^2 \le \varepsilon\right] \le P\left[\frac{m}{2}V^2 \le 0\right] = 0,$$

so $f_E(\varepsilon) = 0$ for $\varepsilon \leq 0$. (1/2 Mark)

Sample2 Relationships

Exercise 2.1

Let X be a discrete random variable following a Bernoulli distribution with parameter p = 1/2 and let X_1, \ldots, X_{10} be a random sample of size 10. Calculate the probability that the sample mean is greater than 3/4, i.e., find

$$P[\overline{X} > 3/4].$$

Solution. We note that $X_1 + \cdots + X_{10}$ follows a binomial distribution with n = 10 and p = 1/2.

Exercise 2.2

Let X be a discrete random variable following a geometric distribution with parameter p = 1/2 and let X_1, \ldots, X_{10} be a random sample of size 10. Calculate the probability that the sample mean is no more than than 1.5, i.e., find

$$P[\overline{X} \le 1.5].$$

Solution. We note that $X_1 + \cdots + X_{10}$ follows a Pascal distribution with r = 10 and p = 1/2.

Exercise 2.3

Let X be a discrete random variable following a Poisson distribution with parameter k = 2 and let X_1, \ldots, X_{10} be a random sample of size 10. Calculate the probability that the sample mean is no more than than 1.5, i.e., find

$$P[\overline{X} \le 1.5].$$

Solution. We note that $X_1 + \cdots + X_{10}$ follows a Poisson distribution with k = 20.

Sample4 Conditional Probability

Exercise 4.2

A company produces toy plastic coins for use in board games. They will be tossed and should return either "heads" or "tails" with equal probability $p_0 = 0.5$. Most of the coins are fine, but due to a molding process fault, 5% of the coins are defective and have a p = 0.7 chance of returning "heads".

A coin is tested by tossing it 100 times and recording the number of heads. It will be deemed defective and discarded if "heads" occurs at least 70 times.

Given that a coin is discarded, what is the probability that it was defective?

Solution. We know that P[defective] = 0.05. Furthermore,

$$P[\text{discarded} \mid \text{not defective}] = \frac{1}{2^n} \sum_{x=70}^{100} {100 \choose x} = 0.000039$$

and

$$P[\text{discarded} \mid \text{defective}] = \sum_{x=70}^{100} {100 \choose i} 0.7^x 0.3^{100-x} = 0.549$$

Then

$$P[\text{defective} \mid \text{discarded}] = \frac{P[\text{discarded} \mid \text{defective}] \cdot P[\text{defective}]]}{P[\text{discarded} \mid \text{defective}] \cdot P[\text{defective}]] + P[\text{discarded} \mid \text{not defective}] \cdot P[\text{not defective}]]}$$
$$= \frac{0.549 \cdot 0.05}{0.549 \cdot 0.05 + 0.000039 \cdot 0.95}$$
$$= 0.999$$

- i) 2 Marks for writing down the correct probabilities based on the exercise description.
- ii) 2 Marks for the calculation using conditional probabiliy/Bayes's theorem.
- iii) 1 Mark for the correct correct result, if it is supported by calculation above.

8 Tips for Mid

- 1. Know how to integration.
- 2. Understand why and when you can use the methods and theorems.
- 3. Understand how to calculate and use E[X], Var[X], MGF, CDF, ... for arbitrary distributions, instead of memorizing or searching them for common distributions.
- 4. Understand the meaning and relationships between different distributions, instead of memorizing these equations for a single distribution.
- 5. Understand the parts related to the conditional probability.
- 6. Prove any statement not proved in class or in homeworks. Although probably you do not need such statements.

Wish you good luck in all of your midterm exams!