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1 SELF-CHECK

1 Self-check
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11.
12.

Elementary Probability

Conditional Probability

Discrete Random Variables
Continuous Random Variables
Expectation, Variance and Moments
Meanings of and Relationship Between Distributions
Multivariate Random Variables
Transformation of Random Variables
Reliability

Samples and Data Visualization
Parameter Estimation

Interval Estimation



2 ELEMENTARY PROBABILITY

2 Elementary Probability

2.1 Cardano’s Principle

Let A be a random outcome of an experiment that may proceed in various ways. Assume
each of these ways is equally likely. Then the probability P[A] of the outcome A is:

number of ways leading to outcome A

PlA]

" total number o f ways (the experiment can proceed)

2.2 Counting Ways for Events

Suppose a set A of n objects is given. From A:

n!
—k)!

1. choose k ordered objects: @

n!
k!(n—k)!

2. choose k unordered objects:
3. partitioning A into k disjoint subsets A, ..., Ay having ni,...,n; elements:
nl

nil..ng!

Understand: Order the total n objects, use clapboard to separate, consider repetition.

2.3 Axiomatic Approach

oc—Field

S is a non-empty set. A o—field F on S is a set of subsets of S such that:
(i) e F
(i) if Ae #, then S\A € .7

(iii) if Ay, Ao, ... € F is a finite or countable sequence of subsets, then the union | J, Ay €

F.

Probability Measures and Spaces

Let S be a sample space and .# a o—field on S. A probability measure (or probability
function or just probability) on S is a function such that:

P: % —|[0,1, A~ P[A]




2.3 Axiomatic Approach 2 ELEMENTARY PROBABILITY

(i) P[S]=1

(ii) For any set of events Ay C .% such that A; N Ay =0 for j £k ,
P {U Ak] = P[A]
k k

Then (S, #, P) is called a probability space.

Almost Surely

A € o—field, and P[A] = 1.
This does not means A = S.

Properties of Probability




3 CONDITIONAL PROBABILITY

3 Conditional Probability

3.1 Definition

Given event A occurs, the probability for B to occur:

P[AN B

PIBIA) = =5y

3.2 Independence

Event A and event B are independent if:
P[AN B] = P[A] - P|B|
And then other properties:
P[B|A] = P[B], if P[A] #0

P[A|B] = P[A], if P[B] £ 0

3.3 Total Probability

3.4 Bayes’s Theorem

Ay, ..., A, C S and pairwise mutually exclusive;
U, 4w = 5;
B C S and P[B] # 0. Then:
P[BN A P [B|Ay] - P [Ag]

PAIB = =B =S PB4 P[4




4 DISCRETE RANDOM VARIABLES

4 Discrete Random Variables

4.1 Definition

Let S be a sample space and €2 a countable subset of R. A discrete random variable is a
map

X:5—-0Q

together with a function
fX Q=R

where

(i) fx(z) >0 forall z € Q
(i) Dpen fx(2) =1

We often say that a random variable is given by the pair (X, fx).

4.2 General Properties

1. fx = P[X = z]: probability density function(PDF).

2. Fx(z) =3, fx(y): cumulative distribution function(CDF).
3. BX] =3 cq®- fx(x): expectation.

4. Var[X] := E[(X — E[X])?] = E[X?] — E[X]*: Variance.

5. mx(t) =Y oy ——tF = E[e"*]: moment generating function (MGF).

4.3 Expectation

Definition

E[X] = Zx - fx(x)

e

Exists only if E[X] converges.

Properties

L ElpoX]| =3 cqp(®)- fx(z)




4.4  Variance 4 DISCRETE RANDOM VARIABLES

2. ¢ € R, then E[c|=c, E[cX]=cE[X]

3. X, Y both be random variables, then E[X+Y]=E[X]+E[Y]

Comments:
1. Describe the location of the average value

2. Different from "median”(or modes)

4.4 Variance

Definition
Var[X] := E [(X — E[X])*] = E[X?] — E[X]?

Standard deviation

Properties
1. ¢ € R, then Var[c|=0, Var[cX]=c*Var[X]

2. VarlX +Y] =VarX|+ Var[Y] +2Cov[X, Y]
Cov[X,Y] = E[(X — pux)(Y — py)] = EIXY] - E[X]E[Y]

4.5 Moment Generating Functions

Moments

ng, (ordinary) moments of X: n=1,2,3,...
E[X"]

ng, central moments of X: n=3,4.5,...




4.6 Summary of discrete distributions 4 DISCRETE RANDOM VARIABLES

MGF i

“ FE|X

mx(t) := Z [k' ]tk = Ele™¥]

k=0 )

Radius of convergence
e>0
Application
d mx(t)
E[X*
[ } dtk -0

4.6 Summary of discrete distributions

distribution
pmf mean variance mgf
Poisson
—aAT A Y e~ AAe!
x!
Binomial
(M) (1 —m)"® nw nw(l — ) (et +1—m)"
Geometric(*
1 1—m T
1—m)" -1 S —
(1 —m) 7r w2 1—(1—m)et
Negative Binomial®
8
ste—1y 81 _ o\@ s S(l — ﬂ-) m
( z )"T( ) T 2 2 1—(1—met
Hypergeometric(z)
() (") Nk
;Emz—n)m Nm N?T(]'_W)Nfl




4.6 Summary of discrete distributions 4 DISCRETE RANDOM VARIABLES

Bernoulli Distribution

Interpolation
Perform one trial. Only two possible outcomes. Probability for success is p, for failure is
q=1-p. x=1 means success, and x=0 means failure.

Definition

_J1=p forz=0
fX(x)_{p forx =1

Features

1. p is the parameter

Binomial Distribution

Interpolation
Perform n independent and identical Bernoulli trials with parameter p. X gives the total
number of success in n trials.

Definition

Xz

() = ( " )pm e
Features

1. p, n are the parameters

2. Fx(z) = 3.7 ( Z )py(l —p)"Y
3. E[X]=np
4. Var[X]=npq

5. mx(t) = (¢g+pe)*, mx :R—-R

Geometric Distribution

Interpolation
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Perform a sequence of i.i.d. Bernoulli trials with parameter p, and stop until get one
success. X gives the total number of trials needed to obtain the first success.

Definition
fx(z) = (1—p)* Vp

Features
1. p is the parameter

2. F(x)=1 — ¢!~

3. E[X]=1
4. Var[X]=5%
5. mx(t) = 13—6(;6“ mx : (—o0o,—Ing) = R

Pascal Distribution

Interpolation
Perform a sequence of i.i.d. Bernoulli trials with parameter p, and get the ' success at
the " trial.

Definition
r—1

e = (121 Jra-pre
Features

1. p, r are the parameters

4. mx(t) = (££5)", mx:(-o00,—Ing) > R

Connection to the Geometric Distribution

1. The Pascal distribution is a generalization of the Geometric distribution. Stop until
get r success.

2. A random variable following the Pascal distribution with parameters r and p is the
sum of r independent geometric random variables with parameter p.

10



4.6 Summary of discrete distributions 4 DISCRETE RANDOM VARIABLES

Negative Binomial Distribution

Interpolation
Perform a sequence of i.i.d. Bernoulli trials with parameter p, and get the r*" success
after x failures. The same as get the 7 success at the (z + r)™" trial.

Definition

r+r—1

r x -r T, T x
e = (2T ) rawr = (7 ) coa-p
Features
1. p, r are the parameters
2. E[X]:@. Can you imagine why?

The Negative Binomial

Poisson Distribution

Interpolation
In a continuous interval [a, b], a certain event occurs for totally x times.

Assumptions

1. Independence: If the intervals 77, T5 C [0, t] do not overlap (except perhaps at one
point), then the numbers of arrivals in these intervals are independent of each other.

2. Constant rate of arrivals.

Definition i
k¥e~
fx(z) = =
x=0,1,2 3, ..
Features

1. k is the parameter. k = \t, where X is the arrival rate and t is the length of the
interval [a, b].

2. E[X]=k
3. Var[X]=k

4. mx(t) = ek

11



4.6 Summary of discrete distributions 4 DISCRETE RANDOM VARIABLES

Approximate the Binomial Distribution

A binomial distribution with large n and small p, can be approximated by a Poisson dis-
tribution with k=np, where you make sure the expected value is the same.

Because when n — oo, n - p = k:

n €T o n—x . E —k

Hypergeometric Distribution

Interpretation:

A total of N balls, r red and N — r black. Draw n balls out without putting back.
Assume r > n and N — r > n. The random variable X describes the number of red balls in
the n drawn balls.

Features:

1. N, r, n are the parameters

2. fulo) = )
()

_ 1 N—r N—
4. Var X =ng~x 31

S

Connection to the Bernoulli Distribution:
It is a sequence of identical but not independent Bernoulli trials. Each draw is a Bernoulli
trial with p = %.

12



5 CONTINUOUS RANDOM VARIABLES

5 Continuous Random Variables

5.1 Definition

Let S be a sample space. A continuous random variable is a map
X:S—=R
together with a probability density function
fx R—=R
where
(i) fx(z)>0forallz € R
(i) 7o fx(z)dz =1

5.2 General Properties

1. fx: probability density function(PDF). Notice in comparison to the discrete random
variables, now fy # P[X =uz]|. P[X =z] =0.

2. Fx(x) = [*_ fx(y)dy: cumulative distribution function(CDF). And Fk(z) = fx(z)
holds.

3. E[X]:= [T - fx(x)da: expectation.
4. Var[X] := E[(X — E[X])?] = E[X?] — E[X]*: Variance.

5. mx(t) := Ele"™*] = [7_e" fx(x) dz: moment generating function (MGF).

5.3 Locations

1. The median M,: P[X < M,| =0.5
2. The mean E[X]: The average value.

3. The mode xy: The location having the maximum fx (if there is a unique maximum
location).

13



5.4 Memoryless 5 CONTINUOUS RANDOM VARIABLES

5.4 Memoryless

Definition
PIX >z + s|X >z] = P[X > s

Interpolation
Let’s observe the definition above. What do you notice?
P[X>x+s | X>x]=P[X>s| does not rely on "x”. We can interpret as:
P[X>x+s | X>x] does not "remember” that it is already with X>x.

5.5 Summary of continuous distributions

distribution
pdf mean variance mgf
Uniform
A ifzeab], b+a (b —a)? css ift#0,
0 otherwise 2 12 1 ift=0.
Standard normal
1 1,2 2
——e 27 0 1 et /2
V2T
Normal
LIS i o? Mttt/
oV 2T
Exponential
e 1/A 1/22 ﬁ
Gamma
Aa a—1_—Az 2 A *
A A _—
M@® ° of o/ [;\ - J
Weibull
o ootemwor Fra+d) g ra+2)- [ra+ )]
Beta
I'(a+8) ma—l(l _ $)3_1 a ap
T(a)T(B) a+ B (a+B8)*(a+p4+1)

14



5.5 Summary of continuous distributions 5 CONTINUOUS RANDOM VARIABLES

Exponential Distribution

Connection to the Poisson Distribution:
Start from the point of an arrival, the time for one successive arrival of a Poisson-

distributed random variable to occur is exponentially distributed with parameter § = .
(Recall: k= \t)

Initial arrival Next arrival

L J
I

Time period: T—Exp. Distributed

Figure 1: The exponential distribution

Definition:
pe e x>0

o ={ 0" 20

Features:
1. [ is the parameter.
2. Fx(x)=1—eF
3. E[X]=
4. Var[X]:ﬁi2

6. Memoryless

15



5.5 Summary of continuous distributions 5 CONTINUOUS RANDOM VARIABLES

fs(x)
A

\J
x

Figure 2: The exponential distribution

Gamma Distribution

Connection to the Poisson Distribution

Start from the point of an arrival, the time for r successive arrivals of a Poisson-distributed
random variable to occur follows a gamma distribution with parameter o = r, § = A.
(Recall: k= \t)
Connection to the Exponential Distribution

It’s a sum of i.i.d exponential Distributions.

Initial arrival 1 2 r-1 The rw arrival

{ J
Y

Time period: T —Gamma Distributed

Figure 3: The gamma distribution

Definition

fust) = { 1

Features
1. «, 8 are the parameters.

2. Fx(x)=1-¢"

16



5.5 Summary of continuous distributions

5 CONTINUOUS RANDOM VARIABLES

5. mx(t)=(1—5)"% mx:(-00,8) =R
6. Not memoryless
f22(x)
A 100
A
6,
2+
1
— X
» X 1 2 3 4

(a) The gamma distribution

(b) The gamma function

Figure 4: Gamma

Euler Gamma Function

o0 — —
22 le™%dz

L (o) = J,

2.T1)=1T(a)=(a—DI'(a—1) fora>1

3.nl=T(n+1),forneR

(2n—1)(2n—3)...1 \/’7_1'

271/

Chi-squared Distribution

Connection to the Gamma Distribution

It’s a special case of the gamma distribution, with a = 3, 8 =

Connection to the Normal Distribution

The sum of v independent standard normal distribution follows a chi-squared distribution

with v degree of freedom.

%, where v € N

17



5.5 Summary of continuous distributions 5 CONTINUOUS RANDOM VARIABLES

Definition

[ () r( /12)2%:”7/2_16%/2’ v >0
xTr) = v
K <0

Y

Features:
1. ~ is the parameter, the degree of freedom

2. Fx(x)=1-—¢"

Normal(GauB3) Distribution

Definition
(@) = (=)o /2
2o

Features
1. p, 0 are the parameters
2. EX] =p
3. Var[X] = §?
4. mx(t) = ertto /2
Pl—0 <X —pu<o0]=0.68

P20 < X —pu < 20]=0.95
P[-30 < X — i < 30] = 0.997

Standard Normal Distribution

Definition
Let X be a normally distributed random variable with mean p and standard deviation 9.
Then Z = % follows a standard normal distribution with mean 0 and variance 1.

Features

18



5.5 Summary of continuous distributions 5 CONTINUOUS RANDOM VARIABLES

1 z 2 1 VA
O(2) i= — e V24t = Zer fo(——
(=) \/_27r/oo =)
Where we define:

2 [F e
erf(z) := —/ e Udt, erfc(z) :=1— erf(2)
VT Jo
Connection to the Chi-square Distribution

A Chi-square distributed variable with v degree of freedom, is the sum of r square of
standard normal distributed variables. Simply:

Xn = i z;
i=1

Approximate the Binomial Distribution

i3 (2 ) areme (E222)

=0 np(l _p)

Be careful with the half-unit correction.

Weibull Distribution

Definition

_ a@xﬁfle*a‘”ﬁ, x>0
fla) = { 0, otherwise @ f >0

Features
1. E[X] =a V(14 1/p)
2. Var X = o 2P (1 +2/8) — 12
If f4 follows Weibull Distribution
L oa(t) = apt’™!

2. Ra(t) = e’

19



5.6 The Chebyshev Inequality 5 CONTINUOUS RANDOM VARIABLES

Connection to the Exponential Distribution
When 8 =1, it is the exponential distribution.

Uniform Distribution

Definition ,
_ ) 7 @ <zr<b
f(@) { , otherwise
Features
_ =, a<x<b
L F(z) { , otherwise
2. B[X] = 2t

5.6 The Chebyshev Inequality

Theorem

Let ¢ > 0 be any real number, and for k € N — 0, then for any random variables:

Px) 2 < 21X

Application

In general, for any variables:

P(|X — p| > mo] < =5
Pl[-mo <X —p<mo]>1-—

1
2

20



5.7 Transformation of Random Variables 5 CONTINUOUS RANDOM VARIABLES

5.7 Transformation of Random Variables

Theorem

Let X be a continuous random variable with density fx.
Let Y = ¢ o X |, where ¢ : R — R is strictly monotonic and differentiable. The density
for Y is then given by

M’ for y € ranp

fr(y) = fx (0™ (¥) - | %5
frly)=0 fory¢rang

It is important to know how to prove.

Proof

Step 1: Find CDF Fy (y).

Step 2: Find fy(y) = Fy (y)

frw) = Fy(y) = —fx (¢ (v)

21



6 RELATIONSHIPS OF DISTRIBUTIONS

6 Relationships of Distributions

Pascal
%
Geometric Hypergeometric
P N.,n.r
p=
k= np
Poisson n—=x Binomial
A n.p
sum .y 7 = ]
\ /
\
\ i
X /
p=k=ol\ X Bernoulli
\ 411‘—‘ np P
\ = np(l - p)
\‘ n - oo
Sum/subtraction
Normal
Lo
sum
Standard
normal
Sum of squares
,
Chi-squared
y
sum

Weibull
a, B

22



7 Exercise

Exercisel Integration

The distribution funetion of the speed (modulus of the velocity) V' of a gas molecule is described by the
Maxwell-Boltzmann law 12
(2) (E)‘W""Qﬂ_’?“'“zm v>0
fV(T"‘) = m kT

0 v <0
where m > 0 is the mass of the molecule, 7" > 0 is its temperature and & > 0 is the Boltzmann constant.
i) Find the mean and variance of V.
ii) Find the mean of the kinetic energy £ = mV?/2.
iii) Find the probability density fg of E.
(3 + 2 4+ 2 Marks)

Solution. 1) The mean of V' is given by

EIV] - ] (e
I/Q(rn)U?/m M 3= Ev?/2 g,
== — v
T kT o KT
\Y2  m\1/2 [ w2
_ = o e — BTV /2
2 (;T) (kT) fo ve dv
1/2
2 m\—1/2 m 2
= o TV /? o0
2(2)7 () e

QkT)”"’

miw

2

(1 Mark) Furthermore,
E[V?] = /1)2_}"1;(1)) d
R
V2 2 2
—(2 (ﬁ) / T e #/2 gy
™ kT 0 kT
2\'% /12 w2
= ; — R —rTVY /2
3 (ﬁ) (kT) /0 v2e dv
—3 2 I/Q(E)—l/?/m m_Z/Qd
™ kT 0

Setting w = y/m/ (kT )v, we have

-1 = 2 [
E[V?] =6 ( m ) L /0 e dy = E

kT

(1 Mark) It follows that
VarV = E[V?] —E[V]? = M (3 - §)
(1 Mark)
ii) The expectation value of the kinetic energy is given by

E[E] = EE[V?] = EE ~ 3

m 2



7 EXERCISE

iii) Note that the function ¢: R — R, U {0}, ¢(v) = ﬂs is not bijective, so we can’t simply apply the
theorem for transforming random variables from the lecture. Let £ > 0. Then

.._/m

Fg(e)=PE<ée] = [’”1~< ]_P[ V2e/m <V <m] / fv(v) dv

2e fm
\/2:‘/:11
= / Jv(v) de.

0

(1/2 Mark) It follows that

ff()_f'()_fl(\f"/’”) m

1/z 3/2 9 .
~(2 (1)” 2€ -t L
T kT m V2me

~3/2 foo ¥

2
= —(kT
7 &)
for £ > 0. (1 Mark) For ¢ <0 we have

Fi(c) = P[E < ¢ ]—P[E _:]<P[ﬂl~<n]=(l.

so fe(s) =0fore < 0. (1/2 Mark)

Sample2 Relationships

Exercise 2.1

Let X be a discrete random variable following a Bernoulli distribution with parameter p = 1/2 and let
X1,...,X10 be arandom sample of size 10. Calculate the probability that the sample mean is greater than 3/4,
i.e., find

P[Y > 3/4].
Solution. We note that X7 + - -- + X0 follows a binomial distribution with n = 10 and p = 1/2.

Exercise 2.2

Let X be a discrete random variable following a geometric distribution with parameter p = 1/2 and let
X1,...,X10 be a random sample of size 10. Calculate the probability that the sample mean is no more than
than 1.5, i.e., find

P[X < 1.5].
Solution. We note that X; + - -+ + X follows a Pascal distribution with » = 10 and p = 1/2.

Exercise 2.3

Let X be a discrete random variable following a Poisson distribution with parameter k = 2 and let X1,..., Xjg
be a random sample of size 10. Calculate the probability that the sample mean is no more than than 1.5, i.e.,
find

P[X < 1.5].

Solution. We note that X; + - -- + X;( follows a Poisson distribution with k = 20.

24



7 EXERCISE

Sample4 Conditional Probability

Exercise 4.2

A company produces toy plastic coins for use in board games. They will be tossed and should return either
“heads” or “tails” withe qual probability po = 0.5. Most of the coins are fine, but due to a molding process

fault, 5% of the coins are defective and have a p = 0.7 chance of returning “heads”.

A coin is tested by tossing it 100 times and recording the number of heads. It will be deemed defective and

discarded if “heads” occurs at least 70 times.
Given that a coin is discarded, what is the probability that it was defective?
Solution. We know that P[defective] = 0.05. Furthermore,

100

1 1
Pldiscarded | not defective] = — Z ( 00) = 0.000039
2 =70 .
and
100 100
Pldiscarded | defective] = Z ( . )0.7”0.3100_z = 0.549
=70
Then

Pl[discarded | defective] - P[defective]]

Pldefective | discarded] =

B 0.549 - 0.05
~0.549 - 0.05 + 0.000039 - 0.95
= 0.999

i) 2 Marks for writing down the correct probabilities based on the exercise description.
i) 2 Marks for the calculation using conditional probabiliy/Bayes’s theorem.

iii) 1 Mark for the correct correct result, if it is supported by calculation above.

25

Pldiscarded | defective] - P[defective]] + P[discarded | not defective] -

Plnot defective]]



8§ TIPS FOR MID

8 Tips for Mid

1. Know how to integration.
2. Understand why and when you can use the methods and theorems.

3. Understand how to calculate and use E[X], Var[X], MGF, CDF, ... for arbitrary

distributions, instead of memorizing or searching them for common distributions.

4. Understand the meaning and relationships between different distributions, instead of
memorizing these equations for a single distribution.

5. Understand the parts related to the conditional probability.

6. Prove any statement not proved in class or in homeworks. Although probably you do
not need such statements.

Wish you good luck in all of your midterm exams!

26



