VE401 Recitation Class Note Final Part1

Chen Siyi
siyi.chen_chicy@sjtu.edu.cn

1 Overview

1. The Fisher Test
2. Neyman-Pearson Decision Theory
3. Null Hypothesis Significance Testing
4. Single Sample Tests for the Mean and Variance
5. Non-Parametric Single Sample Tests for the Median
6. Inferences on Proportions
7. Comparison of Two Variances
8. Comparison of Two Means
9. Non-Parametric Comparisons; Paired Tests and Correlation
10. Categorical Data
11. Simple Linear Regression I: Basic Model and Inferences
12. Simple Linear Regression II: Predictions and Model Analysis
13. Multiple Linear Regression I: Basic Model
14. Multiple Linear Regression II: Inferences on the Model
15. Multiple Linear Regression III: Finding the Right Model
16. ANOVA I: Basic Model
17. ANOVA II: Further Model Inferences

2 Fisher's Null Hypothesis Testing

Goal:

Find statistical evidence that allows us to reject the null hypothesis H_{0}.

Null Hypothesis:

1. $\theta=\theta_{0}$
2. $\theta \leq \theta_{0}$
3. $\theta \geq \theta_{0}$

Steps:

1. Set H_{0} as what you wish to reject
2. Gather data for a random sample.
3. Calculate P-value for the data.
4. If P-value is small enough, reject H_{0} at the [P-value] level of significance.

2.1 P-value

Definition:

$$
P\left[D \mid H_{0}\right] \leq P \text {-value }
$$

Interpretation:

D represents the statistical data.
But do notice here, take Z-test as example, D does not means obtaining this specific value of \bar{x}. D can be understood as the case "value of \bar{X} being \bar{x} or worse ones for supporting H_{0} true". Simply means \bar{X} being \bar{x} or even further from what H_{0} expects.

Example:

Z-test, $H_{0}: \mu \leq \mu_{0}$, then

$$
\begin{gathered}
P \text {-value }=\max \left\{P\left[\bar{X} \geq \bar{x} \mid \mu \leq \mu_{0}\right]\right\}=P\left[\bar{X} \geq \bar{x} \mid \mu=\mu_{0}\right] \\
\quad P \text {-value }=P\left[\frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}} \geq \frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{n}}\right]=P\left[Z \geq \frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{n}}\right]
\end{gathered}
$$

Rejecting H_{0} :
Reject H_{0} if P-value is small. Then we say we reject H_{0} at the [P-value] level of significance.

Question: P-value

Suppose that a Fisher test of the null hypothesis

$$
H_{0}: \mu \leq \mu_{0}
$$

yields a very small P-value. Which of the following statements will be true?

1. It is likely that the true value of μ is much larger than μ_{0}.
2. Data was obtained that was very unusual, if the assumption is made that H_{0} is true.
3. It is unlikely that H_{0} is true, given the data that was obtained.
4. The rejection of H_{0} is unlikely to be a mistake.

2.2 One-tailed and Two-tailed Test

One-tailed:

$H_{0}: \theta \leq \theta_{0}$ or $H_{0}: \theta \geq \theta_{0}$

Two-tailed:

$$
H_{0}: \theta=\theta_{0}
$$

Be careful with the different P -value for one-tailed and two-tailed test. For two-tailed test, there is a double.

2.3 Remarks

1. Need multiple, independent significant tests.
2. $P\left[H_{0} \mid D\right]$ is wanted instead of $P\left[D \mid H_{0}\right]$, but we obtain $P\left[D \mid H_{0}\right]$.
3. Two-tailed tests are pointless. H_{0} can always be rejected if the sample size n is chosen large enough.

3 Neyman-Pearson Decision Theory

Goal:

Seek to reject H_{0}, in which case we accept H_{1}.

1. H_{0} : null hypothesis
2. H_{1} : research hypothesis, or alternative hypothesis.

Steps:

(i) Select appropriate hypotheses H_{1} and H_{0} and a test statistic;
(ii) Fix α and β for the test;
(iii) Use α and β to determine the appropriate the sample size;
(iv) Use α and the sample size to determine the critical region;
(v) Obtain the sample statistic; if the test statistic falls into the critical region, reject H0 at significance level α and accept H_{1}. Otherwise, accept H_{0}.

3.1 Type I, Type II Errors and Power

	Actual situation	
Decision	H_{0} true	H_{1} true
Reject	Type I error	Correct
H_{0}	(probability α)	decision
Fail to	Correct reject H_{0}	Type II error decision

1. $\alpha:=P[$ Type I error $]=P\left[\right.$ reject $H_{0} \mid H_{0}$ true $]=P\left[\right.$ accept $H_{1} \mid H_{0}$ true $]$
2. $\beta:=P[$ Type II error $]=P\left[\right.$ fail to reject $H_{0} \mid H_{1}$ true $]=P\left[\right.$ accept $H_{0} \mid H_{1}$ true $]$
3. Power $:=1-\beta=P\left[\right.$ reject $H_{0} \mid H_{1}$ true $]=P\left[\right.$ accept $H_{1} \mid H_{1}$ true $]$

3.2α and the Critical Region

Definition:

If H_{0} is true, then the probability of the test statistic's values falling into the critical region is $\leq \alpha$.

Rejecting H_{0} :

If the value of the test statistic falls into the critical region, then we reject H_{0}.

Example:

Z-test, $H_{0}: \mu=\mu_{0}, \quad\left(H_{1}:\left|\mu-\mu_{0}\right| \geq \delta\right)$, then

$$
\alpha=P\left[\bar{X} \text { in the critical region } \mid \mu=\mu_{0}\right]
$$

Notice $P\left[\frac{\left|\bar{X}-\mu_{0}\right|}{\sigma / \sqrt{n}}>z_{\alpha / 2}\right]=\alpha$
So the critical region is set as:

$$
\bar{x} \neq \mu_{0} \pm z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}
$$

Comment:

The critical region depends on H_{0}, α, and always the sample size n . But it has no relation to H_{1}.

Question: Clarify CR and CI

1. What's the difference between critical region and confidence interval?
2. Clarify CR and CI in Z-test.
3. Recommend: Review the homework problem 7.2 7.6.

3.3β and the Sample Size

β is decided by H_{1}, α, and sample size n . (Of course also related to the distribution of the statistic you use.)

1. Intuitively, you can calculate β by integration.

Example:

Z-test, $H_{0}: \mu=\mu_{0}, \quad H_{1}:\left|\mu-\mu_{0}\right| \geq \delta$, then

$$
\begin{gathered}
\beta=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{-z_{\beta}} e^{-t^{2} / 2} d t \\
-z_{\beta} \approx z_{\alpha / 2}-\delta \sqrt{n} / \sigma \\
n \approx \frac{\left(z_{\alpha / 2}+z_{\beta}\right)^{2} \sigma^{2}}{\delta^{2}}
\end{gathered}
$$

2. When using a statistic of a typical distribution, read n from $O C$ curves is another efficient way.

3.4 OC Curves

$\alpha, \beta, \mathrm{n}, H_{1}$, when any two of them are fixed, then the left two will have a relationship described by a "function", where you need a parameter representing the effect of H_{1}.

We prefer standardized curves.
Always, in one graph, we fix α, and choose several n. The horizontal ordinate uses a standardized parameter representing the effect of H_{1}, and the vertical coordinate is $1-\beta$.

Example for two-tailed Z-test, where the abscissa is standardized as:

$$
d=\frac{\left|\mu-\mu_{0}\right|}{\sigma}
$$

Basic Reading:

1. Known $H_{0}, H_{1}, \alpha, \beta$. Determine the needed n.
2. Known H_{0}, H_{1}, α, n. Obtain β.
3. Known H_{0}, α, β, n. Make inferences on H_{1}.

Question: Neyman-Pearson Decision Theory

Recommend: Review the homework problem 7.3.
Hint:

1. $n_{1} \neq n_{2}$, but in the comparison test for variance, reading from OC curve requires $n_{1}=n_{2}$. Some estimations:... But do remember to indicate your estimation.
2. Calculate by the definition of power. Not required, but can try and ask if you are interested.

4 Null Hypothesis Significance Testing

Steps:

1. Two hypotheses, H_{0} and H_{1} are set up, but H_{1} is always the logical negation of H_{0}
2. Then either a "hypothesis test" is performed, whereby a critical region for given α is defined, the test statistic is evaluated and H_{0} is either rejected or accepted.
3. Alternatively (and more commonly), the test statistic is evaluated immediately, a P-value is found, and H_{0} is either rejected or accepted based on that value.
4. In either case, there is no meaningful discussion of β, since H_{1} is exactly the negation of H_{0}.

5 Parametric Test for Mean

Distribution of X_{i}	Sample size n	Variance σ^{2}	Statistic
$X_{i} \sim \mathcal{N}(\mu, \sigma)$	any	known	$\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}} \sim \mathcal{N}(0,1)$
$X_{i} \sim$ any distribution	large	known	$\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}} \sim \mathcal{N}(0,1)$
$X_{i} \sim$ any distribution	large	unknown	$\frac{\bar{X}-\mu}{\frac{s}{\sqrt{n}}} \sim \mathcal{N}(0,1)$
$X_{i} \sim \mathcal{N}(\mu, \sigma)$	small	unknown	$\frac{\bar{X}-\mu}{\frac{s}{\sqrt{n}}} \sim t_{n-1}$
$X_{i} \sim$ any distribution	small	known or unknown	Go home!

5.1 Z-test

Test Statistic:

$$
Z=\frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}}
$$

Reject at significance level α :
(i) $H_{0}: \mu=\mu_{0}$ if $|Z|>z_{\alpha / 2}$
(ii) $H_{0}: \mu \leq \mu_{0}$ if $Z>z_{\alpha}$
(iii) $H_{0}: \mu \geq \mu_{0}$ if $Z<z_{-\alpha}$

Abscissa of OC Curves:

$$
d=\frac{\left|\mu-\mu_{0}\right|}{\sigma}
$$

5.2 T-test

Test Statistic:

$$
T_{n-1}=\frac{\bar{X}-\mu_{0}}{S / \sqrt{n}}
$$

Reject at significance level α :
(i) $H_{0}: \mu=\mu_{0}$ if $\left|T_{n-1}\right|>t_{\alpha / 2}$
(ii) $H_{0}: \mu \leq \mu_{0}$ if $T_{n-1}>t_{\alpha}$
(iii) $H_{0}: \mu \geq \mu_{0}$ if $T_{n-1}<t_{-\alpha}$

Abscissa of OC Curves:

$$
d=\frac{\left|\mu-\mu_{0}\right|}{\sigma}
$$

Estimate σ :

(i) Use prior experiments to insert a rough estimate for σ
(ii) Express the difference $\delta=\left|\mu-\mu_{0}\right|$ relative to σ
(iii) Substitute the sample standard deviation s for σ.

6 Parametric Test for Variance

Distribution of X_{i}

$$
X_{i} \sim \mathcal{N}(\mu, \sigma)
$$

Sample size n
Mean μ

Statistic

any known or unknown

$$
\frac{s^{2}(n-1)}{\sigma^{2}} \sim \chi_{n-1}^{2}
$$

6.1 Chi-squared Test

Test Statistic:

$$
\chi_{n-1}^{2}=\frac{(n-1) S^{2}}{\sigma_{0}^{2}}
$$

Reject at significance level α :
(i) $H_{0}: \sigma=\sigma_{0}$ if $\chi_{n-1}^{2}>\chi_{\alpha / 2, n-1}^{2}$ or $\chi_{n-1}^{2}<\chi_{1-\alpha / 2, n-1}^{2}$
(ii) $H_{0}: \sigma \leq \sigma_{0}$ if $\chi_{n-1}^{2}>\chi_{\alpha, n-1}^{2}$
(iii) $H_{0}: \sigma \geq \sigma_{0}$ if $\chi_{n-1}^{2}<\chi_{1-\alpha, n-1}^{2}$

Abscissa of OC Curves:

$$
d=\frac{\sigma}{\sigma_{0}}
$$

7 Non-parametric Test for Median

1. Non-parametric statistics: do not assume the dependence on any parameter.
2. Distribution-free statistics: do not assume that X follows any particular distribution (such as the nor- mal distribution).

7.1 Sign Test

Number of Signs:

Let X_{1}, \ldots, X_{n} be a random sample of size n from an arbitrary continuous distribution and let

$$
Q_{+}=\#\left\{X_{k}: X_{k}-M_{0}>0\right\}, \quad Q_{-}=\#\left\{X_{k}: X_{k}-M_{0}<0\right\}
$$

Q_{+}is the number of "positive signs" and Q the number of "negative signs".
If $X_{i}-M_{0}=0$, usual practice is to exclude X_{i} from the analysis.

Calculating P -value:

$$
P\left[Q_{-} \leq k \mid M=M_{0}\right]=\sum_{x=0}^{k}\binom{n}{x} \frac{1}{2^{n}}
$$

Rejecting H_{0} :

We reject at significance level α :
(i) $H_{0}: M \leq M_{0}$ if $P\left[Q_{-}<k \mid M=M_{0}\right]<\alpha$
(ii) $H_{0}: M \geq M_{0}$ if $P\left[Q_{+}<k \mid M=M_{0}\right]<\alpha$
(iii) $H_{0}: M=M_{0}$ if $P\left[\min \left(Q_{-}, Q_{+}\right)<k \mid M=M_{0}\right]<\alpha / 2$

Question: Sign Test

Ex7.1: The diameter of a ball bearing was measured by an inspector using a new type of caliper. The results were as follows (in mm):
$0.265,0.263,0.266,0.267,0.267,0.265,0.267,0.267,0.265,0.268,0.268,0.263$.

1. Use the sign test to evaluate the claim that the median ball diameter is equal to 0.265 mm .

7.2 Wilcoxon Signed Rank Test

Sum of Ranks:

Let X_{1}, \ldots, X_{n} be a random sample of size n from a symmetric distribution.
Order the n absolute differences $\left|X_{i}-M_{0}\right|$ according to magnitude, so that $X_{R_{i}}-M_{0}$ is the $R_{i}{ }^{t} h$ smallest difference by modulus.

If ties in the rank occur, the mean of the ranks is assigned to all equal values.
Let

$$
W_{+}=\sum_{R_{i}>0} R_{i}, \quad\left|W_{-}\right|=\sum_{R_{i}<0}\left|R_{i}\right|
$$

W_{+}is the sum of "positive ranks" and W the modulus of the sum of "negative signs". If $X_{i}-M_{0}=0$, usual practice is to exclude X_{i} from the analysis.

The Critical Value:

For small n, for example ≤ 30, critical values are given in tables.

Rejecting H_{0} :

We reject at significance level α :
(i) $H_{0}: M \leq M_{0}$ if W_{-}is smaller than the critical value for α
(ii) $H_{0}: M \geq M_{0}$ if W_{+}is smaller than the critical value for α
(iii) $H_{0}: M=M_{0}$ if $W=\min \left(W_{+},\left|W_{-}\right|\right)$is smaller than the critical value for $\alpha / 2$

Calculating P-Value:

For large n, we use the normal distribution to approximately calculate P-value, with parameters

$$
\mu=\frac{n(n+1)}{4}, \quad \sigma^{2}=\frac{n(n+1)(2 n+1)}{24}
$$

Rejecting H_{0} :

We reject at the [P-value] significance level if [P-value] is small.

Question: Wilcoxon Signed Rank Test

Ex7.1:
$0.265,0.263,0.266,0.267,0.267,0.265,0.267,0.267,0.265,0.268,0.268,0.263$.
2. Use the Wilcoxon signed-rank test to evaluate the claim that the median ball diameter is equal to 0.265 mm .
3. Comment on and interpret the results of your tests.

8 Inferences on Proportion

8.1 Estimator and Statistic

Define the random variable:

$$
X= \begin{cases}1 & \text { has trait } \\ 0 & \text { does not have trait }\end{cases}
$$

If we take a random sample X_{1}, \ldots, X_{n} of X , the sample mean is an (unbiased) estimator for p :

$$
\widehat{p}=\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

By the central limit theorem, when n is large enough, \widehat{p} is approximately normally distributed with mean p and variance $p(1-p) / n$. Hence,

$$
Z=\frac{\widehat{p}-p}{\sqrt{p(1-p) / n}}
$$

8.2 Interval Estimation and Sample Size

It follows immediately that the following is a $100(1-\alpha) \%$ confidence interval for p :

$$
\widehat{p} \pm z_{\alpha / 2} \sqrt{p(1-p) / n}
$$

But the interval depends on the unknown parameter p , which we are actually trying to estimate! One solution to the problem is to replace p by \widehat{p}, i.e., to write

$$
\widehat{p} \pm z_{\alpha / 2} \sqrt{\widehat{p}(1-\widehat{p}) / n}
$$

We may want to be able to claim that "with $100(1-\alpha) \%$ probability, \widehat{p} differs from p by at most d."

Given a $100(1-\alpha) \%$ confidence interval $\mathrm{p}=\widehat{p} \pm \mathrm{z}$ know with $100(1-\alpha) \%$ confidence that

$$
d=z_{\alpha / 2} \sqrt{\widehat{p}(1-\widehat{p}) / n}
$$

Given d, this means that we should choose

$$
n=\frac{z_{\alpha / 2}^{2} \widehat{p}(1-\widehat{p})}{d^{2}}
$$

which requires us to have an estimate \widehat{p} of p beforehand.

8.3 Test for Proportion

Let X_{1}, \ldots, X_{n} be a random sample of (large) size n from a Bernoulli distribution with parameter p and let $\widehat{p}=\mathrm{X}$ denote the sample mean. Then any test based on the statistic

$$
Z=\frac{\widehat{p}-p_{0}}{\sqrt{p_{0}\left(1-p_{0}\right) / n}}
$$

is called a large-sample test for proportion.
We reject at significance level α :
(i) $H_{0}: p=p_{0}$ if $|Z|>z_{\alpha / 2}$
(ii) $H_{0}: p \leq p_{0}$ if $Z>z_{\alpha}$
(iii) $H_{0}: p \geq p_{0}$ if $Z<z_{\alpha}$

Question: Neyman-Pearson Test for "Proportion"

Your factory is ordering a large number of widgets from a supplier. Each widget can be either functional or defective. The supplier guarantees that at most 3% of the widgets are defective. Since the widgets are cheap, you are actually willing to accept a rate of defectives as high as 8% before there is cause for concern.
The widgets are shipped in batches of $N=10,000$ items. A sample of size $n=100$ be taken from each batch to ensure that not too many widgets are defective. You and the supplier will agree on a defective number d so that

- If there are at least d defectives in the sample, the supplier agrees that the defective rate is greater than 3% and the batch can be rejected;
- If there are fewer than d defectives, you (the buyer) accepts the batch.

In the following, state all assumptions and/or approximations that you are making.

1. Set up a Neyman-Pearson test to decide between accepting and rejecting a batch.
2. How large does d need to be so that any shipment that is returned has a 99% chance of containing more than 3% of defectives?
3. Given this value of d, what is the probability that you end up accepting a batch with more than 8% of defectives?

9 Comparison of Two Proportions

For large sample size:

$$
\bar{X}^{(1)} \sim N\left(p_{1}, \frac{p_{1}\left(1-p_{1}\right)}{n_{1}}\right), \quad \bar{X}^{(2)} \sim N\left(p_{2}, \frac{p_{2}\left(1-p_{2}\right)}{n_{2}}\right)
$$

So for large sample size:

$$
\widehat{p_{1}-p_{2}}=\widehat{p}_{1}-\widehat{p}_{2} \sim N\left(p_{1}-p_{2}, \frac{p_{1}\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{2}}\right)
$$

Similarly we deduce the following $100(1-\alpha) \%$ confidence interval for $p_{1}-p_{2}$:

$$
\widehat{p}_{1}-\widehat{p}_{2} \pm z_{\alpha / 2} \sqrt{\frac{\widehat{p}_{1}\left(1-\widehat{p}_{1}\right)}{n_{1}}+\frac{\widehat{p}_{2}\left(1-\widehat{p}_{2}\right)}{n_{2}}}
$$

9.1 Large-sample Test for Differences in Proportions

Suppose two random samples of (large) sizes n_{1} and n_{2} from two Bernoulli distributions with parameters p_{1} and p_{2} are given. Denote by \widehat{p}_{1} and \widehat{p}_{2} the means of the two samples.

Let $\left(\widehat{p}_{1}-\widehat{p}_{2}\right)_{0}$ be a null value for the difference $p_{1}-p_{2}$. Then the test based on the statistic

$$
Z=\frac{\widehat{p}_{1}-\widehat{p}_{2}-\left(p_{1}-p_{2}\right)_{0}}{\sqrt{\frac{\widehat{p}_{1}\left(1-\widehat{p}_{1}\right)}{n_{1}}+\frac{\widehat{p}_{2}\left(1-\widehat{p}_{2}\right)}{n_{2}}}}
$$

is called a large-sample test for differences in proportions.
We reject at significance level α :
(i) $H_{0}: p_{1}-p_{2}=\left(p_{1}-p_{2}\right)_{0}$ if $|Z|>z_{\alpha / 2}$
(ii) $H_{0}: p_{1}-p_{2} \leq\left(p_{1}-p_{2}\right)_{0}$ if $Z>z_{\alpha}$
(iii) $H_{0}: p_{1}-p_{2} \geq\left(p_{1}-p_{2}\right)_{0}$ if $Z<-z_{\alpha}$

9.2 Pooled Test for Equality of Proportions

Suppose two random samples of (large) sizes n_{1} and n_{2} from two Bernoulli distributions with parameters p_{1} and p_{2} are given. Denote by \widehat{p}_{1} and \widehat{p}_{2} the means of the two samples.

Let \widehat{p} be the pooled estimator for the proportion, which is defined as

$$
\widehat{p}:=\frac{n_{1} \widehat{p}_{1}+n_{2} \widehat{p}_{2}}{n_{1}+n_{2}}
$$

Then the test based on the statistic

$$
Z=\frac{\widehat{p}_{1}-\widehat{p}_{2}}{\sqrt{\widehat{p}(1-\widehat{p})\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}
$$

is called a pooled large-sample test for equality of proportions.
We reject at significance level α :
(i) $H_{0}: p_{1}=p_{2}$ if $|Z|>z_{\alpha / 2}$
(ii) $H_{0}: p_{1} \leq p_{2}$ if $Z>z_{\alpha}$
(iii) $H_{0}: p_{1} \geq p_{2}$ if $Z<-z_{\alpha}$

