VE401 Recitation Class Note9
 Single Sample Test

Chen Siyi
siyi.chen_chicy@sjtu.edu.cn

1 Parametric Test for Mean

Distribution of X_{i}	Sample size n	Variance σ^{2}	Statistic
$X_{i} \sim \mathcal{N}(\mu, \sigma)$	any	known	$\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}} \sim \mathcal{N}(0,1)$
$X_{i} \sim$ any distribution	large	known	$\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}} \sim \mathcal{N}(0,1)$
$X_{i} \sim$ any distribution	large	unknown	$\frac{\bar{X}-\mu}{\frac{s}{\sqrt{n}}} \sim \mathcal{N}(0,1)$
$X_{i} \sim \mathcal{N}(\mu, \sigma)$	small	unknown	$\frac{\frac{\bar{X}-\mu}{\frac{s}{\sqrt{n}}} \sim t_{n-1}}{}$small
$X_{i} \sim$ any distribution	known or unknown	Go home!	

1.1 Z-test

Test Statistic:

$$
Z=\frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}}
$$

Reject at significance level α :
(i) $H_{0}: \mu=\mu_{0}$ if $|Z|>z_{\alpha / 2}$
(ii) $H_{0}: \mu \leq \mu_{0}$ if $Z>z_{\alpha}$
(iii) $H_{0}: \mu \geq \mu_{0}$ if $Z<z_{-\alpha}$

Abscissa of OC Curves:

$$
d=\frac{\left|\mu-\mu_{0}\right|}{\sigma}
$$

1.2 T-test

Test Statistic:

$$
T_{n-1}=\frac{\bar{X}-\mu_{0}}{S / \sqrt{n}}
$$

Reject at significance level α :
(i) $H_{0}: \mu=\mu_{0}$ if $\left|T_{n-1}\right|>t_{\alpha / 2}$
(ii) $H_{0}: \mu \leq \mu_{0}$ if $T_{n-1}>t_{\alpha}$
(iii) $H_{0}: \mu \geq \mu_{0}$ if $T_{n-1}<t_{-\alpha}$

Abscissa of OC Curves:

$$
d=\frac{\left|\mu-\mu_{0}\right|}{\sigma}
$$

Estimate σ :

(i) Use prior experiments to insert a rough estimate for σ
(ii) Express the difference $\delta=\left|\mu-\mu_{0}\right|$ relative to σ
(iii) Substitute the sample standard deviation s for σ.

2 Parametric Test for Variance

Distribution of X_{i}	Sample size n	Mean μ	Statistic
$X_{i} \sim \mathcal{N}(\mu, \sigma)$	any	known or unknown	$\frac{s^{2}(n-1)}{\sigma^{2}} \sim \chi_{n-1}^{2}$

2.1 Chi-squared Test

Test Statistic:

$$
\chi_{n-1}^{2}=\frac{(n-1) S^{2}}{\sigma_{0}^{2}}
$$

Reject at significance level α :
(i) $H_{0}: \sigma=\sigma_{0}$ if $\chi_{n-1}^{2}>\chi_{\alpha / 2, n-1}^{2}$ or $\chi_{n-1}^{2}<\chi_{1-\alpha / 2, n-1}^{2}$
(ii) $H_{0}: \sigma \leq \sigma_{0}$ if $\chi_{n-1}^{2}>\chi_{\alpha, n-1}^{2}$
(iii) $H_{0}: \sigma \geq \sigma_{0}$ if $\chi_{n-1}^{2}<\chi_{1-\alpha, n-1}^{2}$

Abscissa of OC Curves:

$$
d=\frac{\sigma}{\sigma_{0}}
$$

3 Non-parametric Test for Median

1. Non-parametric statistics: do not assume the dependence on any parameter.
2. Distribution-free statistics: do not assume that X follows any particular distribution (such as the nor- mal distribution).

3.1 Sign Test

Number of Signs:

Let X_{1}, \ldots, X_{n} be a random sample of size n from an arbitrary continuous distribution and let

$$
Q_{+}=\#\left\{X_{k}: X_{k}-M_{0}>0\right\}, \quad Q_{-}=\#\left\{X_{k}: X_{k}-M_{0}<0\right\}
$$

Q_{+}is the number of "positive signs" and Q the number of "negative signs".
If $X_{i}-M_{0}=0$, usual practice is to exclude X_{i} from the analysis.

Calculating P -value:

$$
P\left[Q_{-} \leq k \mid M=M_{0}\right]=\sum_{x=0}^{k}\binom{n}{x} \frac{1}{2^{n}}
$$

Rejecting H_{0} :

We reject at significance level α :
(i) $H_{0}: M \leq M_{0}$ if $P\left[Q_{-}<k \mid M=M_{0}\right]<\alpha$
(ii) $H_{0}: M \geq M_{0}$ if $P\left[Q_{+}<k \mid M=M_{0}\right]<\alpha$
(iii) $H_{0}: M=M_{0}$ if $P\left[\min \left(Q_{-}, Q_{+}\right)<k \mid M=M_{0}\right]<\alpha / 2$

3.2 Wilcoxon Signed Rank Test

Sum of Ranks:

Let X_{1}, \ldots, X_{n} be a random sample of size n from a symmetric distribution.
Order the n absolute differences $\left|X_{i}-M_{0}\right|$ according to magnitude, so that $X_{R_{i}}-M_{0}$ is the $R_{i}{ }^{t} h$ smallest difference by modulus.

If ties in the rank occur, the mean of the ranks is assigned to all equal values.
Let

$$
W_{+}=\sum_{R_{i}>0} R_{i}, \quad\left|W_{-}\right|=\sum_{R_{i}<0}\left|R_{i}\right|
$$

W_{+}is the sum of "positive ranks" and W the modulus of the sum of "negative signs".
If $X_{i}-M_{0}=0$, usual practice is to exclude X_{i} from the analysis.

The Critical Value:

For small n , for example ≤ 30, critical values are given in tables.

Rejecting H_{0} :

We reject at significance level α :
(i) $H_{0}: M \leq M_{0}$ if W_{-}is smaller than the critical value for α
(ii) $H_{0}: M \geq M_{0}$ if W_{+}is smaller than the critical value for α
(iii) $H_{0}: M=M_{0}$ if $W=\min \left(W_{+},\left|W_{-}\right|\right)$is smaller than the critical value for $\alpha / 2$

Calculating P-Value:

For large n, we use the normal distribution to approximately calculate P-value, with parameters

$$
\mu=\frac{n(n+1)}{4}, \quad \sigma^{2}=\frac{n(n+1)(2 n+1)}{24}
$$

Rejecting H_{0} :

We reject at the [P -value] significance level if [P -value] is small.

4 Inferences on Proportion

4.1 Estimator and Statistic

Define the random variable:

$$
X= \begin{cases}1 & \text { has trait } \\ 0 & \text { does not have trait }\end{cases}
$$

If we take a random sample X_{1}, \ldots, X_{n} of X , the sample mean is an (unbiased) estimator for p :

$$
\widehat{p}=\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

By the central limit theorem, when n is large enough, \widehat{p} is approximately normally distributed with mean p and variance $p(1-p) / n$. Hence,

$$
Z=\frac{\widehat{p}-p}{\sqrt{p(1-p) / n}}
$$

4.2 Interval Estimation and Sample Size

It follows immediately that the following is a $100(1-\alpha) \%$ confidence interval for p :

$$
\widehat{p} \pm z_{\alpha / 2} \sqrt{p(1-p) / n}
$$

But the interval depends on the unknown parameter p , which we are actually trying to estimate! One solution to the problem is to replace p by \widehat{p}, i.e., to write

$$
\widehat{p} \pm z_{\alpha / 2} \sqrt{\widehat{p}(1-\widehat{p}) / n}
$$

We may want to be able to claim that "with $100(1-\alpha) \%$ probability, \widehat{p} differs from p by at most d."

Given a $100(1-\alpha) \%$ confidence interval $\mathrm{p}=\widehat{p} \pm \mathrm{z}$ know with $100(1-\alpha) \%$ confidence that

$$
d=z_{\alpha / 2} \sqrt{\widehat{p}(1-\widehat{p}) / n}
$$

Given d, this means that we should choose

$$
n=\frac{z_{\alpha / 2}^{2} \widehat{p}(1-\widehat{p})}{d^{2}}
$$

which requires us to have an estimate \widehat{p} of p beforehand.

4.3 Test for Proportion

Let X_{1}, \ldots, X_{n} be a random sample of (large) size n from a Bernoulli distribution with parameter p and let $\widehat{p}=\mathrm{X}$ denote the sample mean. Then any test based on the statistic

$$
Z=\frac{\widehat{p}-p_{0}}{\sqrt{p_{0}\left(1-p_{0}\right) / n}}
$$

is called a large-sample test for proportion.
We reject at significance level α :
(i) $H_{0}: p=p_{0}$ if $|Z|>z_{\alpha / 2}$
(ii) $H_{0}: p \leq p_{0}$ if $Z>z_{\alpha}$
(iii) $H_{0}: p \geq p_{0}$ if $Z<z_{\alpha}$

5 Acceptance Sampling

Acceptance Sampling

A construction firm receives a shipment of $\mathrm{N}=50$ steel rods to be used in the construction of a bridge. The lot must be checked to ensure that the breaking strength of the rods meets specifications. The lot will be rejected if among the 200 rods more than 10% fail to meet specifications. We define the true proportion of defective for the 200 rods as Π. We test:

$$
H_{0}: \Pi \leq 0.1, \quad H_{1}: \Pi-0.1>\delta=0.1
$$

We test a sample of size $\mathrm{n}=20$ and reject H_{0} if more than $\mathrm{c}=3$ rod fails to meet specifications.

1. What is α ?
2. What is β ?
3. *Can you draw the OC curve?
4. Keep α and n the same, if we want to make $\beta=0.2$, what H_{1} will you set?
5. To make $\alpha=0.05$, assume $\mathrm{n}=10$, what value of c will you choose?
6. ${ }^{* *}$ To make $\alpha=0.05, \beta=0.3$, what value of n will you choose?
