VE401 RECITATION CLASS NOTE8 Hypothesis Testing

Chen Siyi siyi.chen_chicy@sjtu.edu.cn

Z-test:

To review the three general hypothesis testing methods , we take Z-test for the mean as examples.

Let X_1, \ldots, X_n be a random sample of size n from a normal distribution with variance σ^2 , and let \overline{X} denote the sample mean. Let μ be the unknown population mean and μ_0 a null value of that mean. Then any test based on the standard normal distributed statistic below is called a Z-test:

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$$

1 Fisher's Null Hypothesis Testing

Goal:

Find statistical evidence that allows us to **reject** the null hypothesis H_0 .

Null Hypothesis:

1. $\theta = \theta_0$

- 2. $\theta \leq \theta_0$
- 3. $\theta \ge \theta_0$

Steps:

- 1. Set H_0 as what you wish to reject
- 2. Gather data for a random sample.
- 3. Calculate P-value for the data.
- 4. If P-value is small enough, reject H_0 at the [P-value] level of significance.

1.1 P-value

Definition:

 $P[D|H_0] \leq P$ -value

Interpretation:

D represents the statistical data.

But do notice here, take Z-test as example, D does not means obtaining this specific value of \overline{x} . D can be understood as the case "value of \overline{X} being \overline{x} or worse ones for supporting H_0 true". Simply means \overline{X} being \overline{x} or even further from what H_0 expects.

Example:

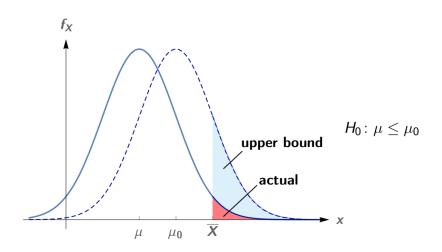
Z-test, $H_0: \mu \leq \mu_0$, then

$$P\text{-value} = max\{P[\overline{X} \ge \overline{x}|\mu \le \mu_0]\} = P[\overline{X} \ge \overline{x}|\mu = \mu_0]$$

$$P\text{-value} = P[\frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} \ge \frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}}] = P[Z \ge \frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}}]$$

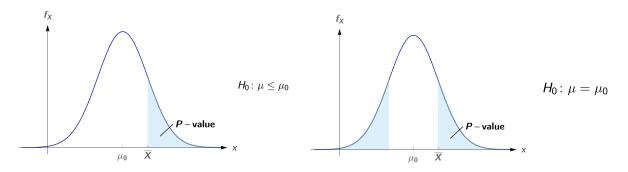
Rejecting H_0 :

Reject H_0 if P-value is small. Then we say we reject H_0 at the [P-value] level of significance.



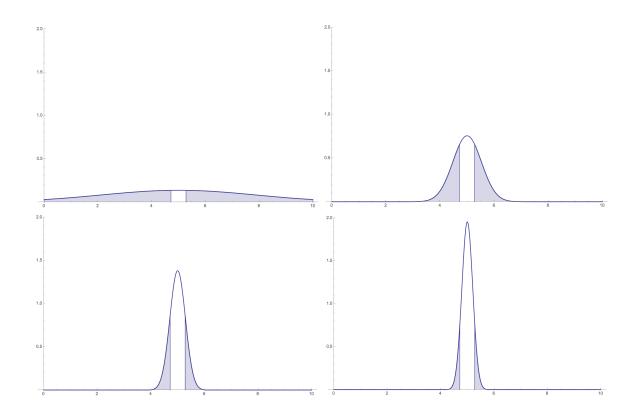
1.2 One-tailed and Two-tailed Test

One-tailed: $H_0: \theta \le \theta_0 \text{ or } H_0: \theta \ge \theta_0$ Two-tailed: $H_0: \theta = \theta_0$ Be careful with the different P-value for one-tailed and two-tailed test. For two-tailed test, there is a double.



1.3 Remarks

- 1. Need multiple, independent significant tests.
- 2. $P[H_0|D]$ is wanted instead of $P[D|H_0]$.
- 3. Two-tailed tests are pointless. H_0 can always be rejected if the sample size n is chosen large enough.



Demo 3.1.

2 Neyman–Pearson Decision Theory

Goal:

Seek to reject H_0 , in which case we accept H_1 .

- 1. H_0 : null hypothesis
- 2. H_1 : research hypothesis, or alternative hypothesis.

Steps:

- (i) Select appropriate hypotheses H_1 and H_0 and a test statistic;
- (ii) Fix α and β for the test;
- (iii) Use α and β to determine the appropriate the sample size;
- (iv) Use α and the sample size to determine the critical region;
- (v) Obtain the sample statistic; if the test statistic falls into the critical region, reject H0 at significance level α and accept H_1 . Otherwise, accept H_0 .

2.1 Type I, Type II Errors and Power

Decision	Actual situation	
	H ₀ true	H_1 true
Reject H ₀	Type I error (probability α)	Correct decision
Fail to reject H ₀	Correct decision	Type II error (probability β)

- 1. $\alpha := P[$ Type I error] = P[reject $H_0 \mid H_0$ true] = P[accept $H_1 \mid H_0$ true]
- 2. $\beta := P[$ Type II error] = P[fail to reject $H_0 \mid H_1$ true] = P[accept $H_0 \mid H_1$ true]
- 3. Power := $1 \beta = P$ [reject $H_0 \mid H_1$ true] = P [accept $H_1 \mid H_1$ true]

2.2 α and the Critical Region

Definition:

If H_0 is true, then the probability of the test statistic's values falling into the critical region is $\leq \alpha$.

Rejecting H_0 :

If the value of the test statistic falls **into** the critical region, then we **reject** H_0 .

Example:

Z-test, $H_0: \mu = \mu_0$, $(H_1: |\mu - \mu_0| \ge \delta)$, then

 $\alpha = P[\overline{X} \text{ in the critical region } \mid \mu = \mu_0]$

Notice $P[\frac{|\overline{X}-\mu_0|}{\sigma/\sqrt{n}} > z_{\alpha/2}] = \alpha$ So the critical region is set as:

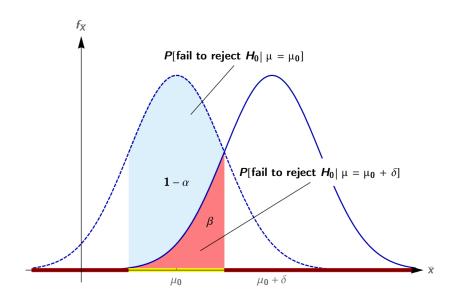
$$\bar{x} \neq \mu_0 \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

Comment:

The critical region depends on H_0 , α , and always the sample size n. But it has no relation to H_1 .

2.3 β and the Sample Size

 β is decided by H_1 , α , and sample size n. (Of course also related to the distribution of the statistic you use.)



Intuitively, you can calculate β by integeration.

Example:

Z-test, $H_0: \mu = \mu_0$, $H_1: |\mu - \mu_0| \ge \delta$, then

$$\beta = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{-z_{\beta}} e^{-t^2/2} dt$$
$$-z_{\beta} \approx z_{\alpha/2} - \delta\sqrt{n}/\sigma$$
$$n \approx \frac{\left(z_{\alpha/2} + z_{\beta}\right)^2 \sigma^2}{\delta^2}$$

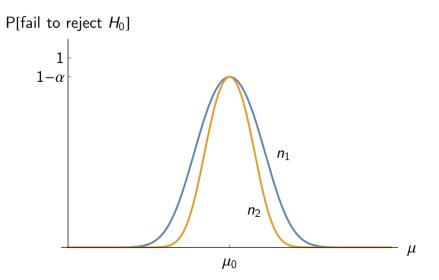
When using a statistic of a typical distribution, read n from OC curves is another efficient way.

2.4 OC Curves

 α , β , n, H_1 , when any two of them are fixed, then the left two will have a relationship described by a "function", where you need a parameter representing the effect of H_1 .

See an example to understand...

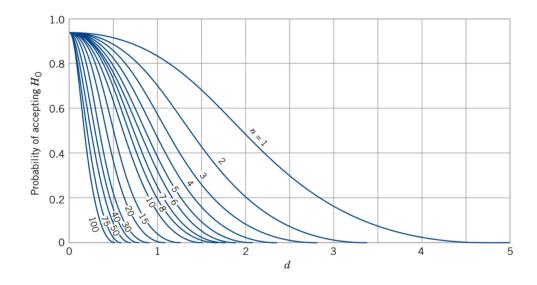
First try to understand this graph you see in class by yourself.



We prefer standardized curves.

Always, in one graph, we fix α , and choose several n. The horizontal ordinate uses a standardized parameter representing the effect of H_1 , and the vertical coordinate is $1 - \beta$. Example for two-tailed Z-test, where the abscissa is standardized as:

$$d = \frac{|\mu - \mu_0|}{\sigma}$$



Basic Reading:

- 1. Known H_0 , H_1 , α , β . Determine the needed n.
- 2. Known H_0 , H_1 , α , n. Obtain β .
- 3. Known H_0 , α , β , n. Make inferences on H_1 .

Question: Draw OC curves

Consider Z-test for μ , with any given α , n, H_0 and H_1 , do you know how to draw the OC curve for that specific case?

3 Null Hypothesis Significance Testing

Steps:

- 1. Two hypotheses, H_0 and H_1 are set up, but H_1 is always the logical negation of H_0
- 2. Then either a "hypothesis test" is performed, whereby a critical region for given α is defined, the test statistic is evaluated and H_0 is either rejected or accepted.
- 3. Alternatively (and more commonly), the test statistic is evaluated immediately, a P-value is found, and H_0 is either rejected or accepted based on that value.
- 4. In either case, there is no meaningful discussion of β , since H_1 is exactly the negation of H_0 .