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1 Parameter Estimation
1.1 Definition

Random Sample:
A random sample of size n from the distribution of X is: a collection of n independent

random variables X1, ... , Xn, each with the same distribution as X.

Parameter θ:
A constant value, but always unknown, and we want to estimate its value. Example:

mean µ of the variable X.

Statistic:
A random variable derived from a random sample of a population. Example: sample

mean X of a random sample.

Estimator θ̂:
A statistic used to estimate a parameter. It’s also a random sample.

Point Estimate:
The specific value of the statistic.

1.2 Bias and MSE
When estimating parameters, we wish the estimation can be more precise. So we wish the

estimator θ̂ is:

1. having small difference from the parameter θ

2. having small variance V ar[θ̂]

Bias:

E[θ]− θ̂

Unbiased:

E[θ] = θ̂
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1.3 Estimators for µ and σ2 1 PARAMETER ESTIMATION

Mean Square Error:

MSE(θ̂) = E
[
(θ̂ − E[θ̂])2

]
+ (θ − E(θ̂))2

= Var θ̂ + ( bias )2

Comment:

1. Bias is only a measurement of our first expectation on θ.

2. MSE measures the overall quality of an estimator.

3. So in general, unbiased estimators are preferred but sometimes biased estimators are used.

1.3 Estimators for µ and σ2

Sample Mean:

X =
1

n

n∑
i=1

Xi

1. E[X] = µ, so X is an unbiased estimator of µ

2. V ar[X] = σ2

n

3. MSE(X) = V ar[X], so MSE can be deduced by choosing a larger sample size.

Sample Variance:

S2 :=
1

n− 1

n∑
k=1

(
Xk − X̄

)2
1. E[S2] = σ2, so S2 is an unbiased estimator of σ2.

Comments:

1. The above properties exist no matter what kind of distributions X and S2 have.

2. For point estimate, not necessary to know their distributions.

3. For interval estimation later, we need to analyze their distribution.
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2 Find Estimator for Parameter
2.1 The Method of Moments

Recall Moments: kth moment of X: E[Xk]

Theorem:
Ê [Xk] =

1

n

n∑
i=1

xk
i

This is an unbiased estimator for E[Xk]. Simply means E[ 1
n

∑n
i=1 x

k
i ] = E[Xk]

General Steps:

1. Express a parameter in terms of moments, such as V ar[X] = E[X2]− E[X]2.

2. Insert the estimators for these moments to obtain an estimator for the parameter.

Comment:
The found estimators may not be unbiased.

2.2 The Method of Maximum Likelihood

Assumption:

1. Xθ is a random variable, whose PDF can be written out with an unknown parameter
θ as fXθ

.

2. X1, X2, X3,...,Xn is a random sample.

3. x1, x2, x3,...,xn are the ”yielded” values of the random sample. Which we consider as
constant in the below steps.

General Steps:

1. Define the likelihood function L by

L(θ) =
n∏

i=1

fXθ
(xi)

2. Find the expression for θ of (x1, x2, ..., xn) that maximizes L(θ). This can also be
done by maximizing ln(L(θ))
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3. In the founded expression, replace θ with θ̂, replace (x1, x2, ..., xn) with (X1, X2,
X3,...,Xn). Then we obtain the maximum likelihood estimator θ̂.

Comment:

1. Generally we do not need (x1, x2, ..., xn) to be concrete known numbers, but we treat the
”yielded” values as constant, in our steps finding the expression for θ.

2. Since what we generally find is an expression, we define the estimator θ̂(which is a random
variable) based on the expression obtained.

3. A point estimate can be obtained by putting the observed values of (x1, x2, ..., xn) into
the expression for θ̂ and calculate.

Question: Find Estimator for exp.

Recall the exponential distribution has PDE: fβ(x) =
{

βe−βx, x > 0
0, x ≤ 0

1. Find an estimator for β using the method of maximum likelihood.

2. Find an estimator for β2 using the method of maximum likelihood if fβ(x) =

x
β2 e

− x2

2β2 .

* In real-life application, when exp. distribution is used to describe failure density, we always
not wait for all machines to fail. So there’s another method. See reference 1 and 2.
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Answer: Find Estimator for exp.

1. Assume a random sample yields values (x1, x2, ..., xn).

L(β) = βne−β(x1+x2+...+xn)

d(Lβ)

dβ
= βn−1e−β(x1+x2+...+xn)(n− β(x1 + x2 + ...+ xn))

So L(β) gets its maximum when:

β =
n

x1 + x2 + ...+ xn

=
1

x

Therefore the estimator is:
β̂ =

1

X

2. Be careful you view β2 as a whole. You can choose to replace β2 = s and then find
ŝ.
The process is similar, but you may need to use ln(L(s)). The result is:

β̂2 =
X2

2

2.3 Failure of the Methods
Question: German Tank Problem

In world war 2, the Allies want to know the number of the German tanks. Suppose the
German mark their tanks with positive integers form 1 to N, if there are totally N German
tanks. After a battle, the Allies checked the destroyed 4 German tanks’ numbers, finding
the numbers are: 5, 7, 2, 19.
Problem: Estimate N.
Try to solve this problem using the method of moments, and the method of most likeli-
hood. What have you noticed?
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Answer: German Tank Problem

Both methods will fail.

1. Method of Moments: N = 2E[X] , Ê[X] = µ̂ = X. So N̂ = 2X Then the point
estimate gives: N = 2x = 16.5.

2. Method of Maximum Likelihood: L(N) = ( 1
N
)N , d(ln(LN)

dN
= ln 1

N
− 1 So the smaller

N, the larger L(N). Notice N ≤ max Xi. N = max Xi. Then the point estimate
gives: N = 2x = 19.

Both ridiculous. So these two method might fail together.
How to solve the GTP? See References:
1. https://en.wikipedia.org/wiki/German_tank_problem
2. Reference 3, page 23-25

3 Interval Estimation
3.1 Confidence Interval

Confidence Interval:
Let 0 ≤ α ≤ 1. A 100(1 − α)% confidence interval for a parameter θ is an interval [L1,

L2] such that
P [L1 ≤ θ ≤ L2] = 1− α

Centered Confidence Interval:

P [θ < L1] = P [θ > L2] =
α

2

One-sided Confidence Interval:
A 100(1 − α)% Upper Confidence Interval θ < L.
With the upper confidence bound satisfying:

P [θ < L1] = 1− α

A 100(1 − α)% Lower Confidence Interval θ > L.
With the upper confidence bound satisfying:

P [θ > L1] = 1− α
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Figure 1: Random Intervals

Question: Random Intervals

What does 100(1 − α)% stands for? Is the below statement right?
We have generated a numerical interval L0 for θ, from a concrete data, there are 100(1 −
α)% probability that θ ∈ L0.

Answer: Random Intervals

Of course wrong. Let’s think about an unfair coin...

1. Flow a coin: generate a numerical interval from a concrete data.

2. Coin turn head: The generated interval contains θ.

3. Coin turn tail: The generated interval excludes θ.

At this stage, we do not know the exact value of θ, we just can not know exactly whether
a generated interval contains θ.
Like you flow a coin, but only the god sees the result.
The true meaning for 100(1 − α)% is:
Of all the intervals constructed for θ by using [L1, L2], 100(1 − α)% of them contain
θ ∈ L0.
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Introduction:
Generally, to construct confidence intervals for θ, we need to:
Find a statistic whose expression involves θ, and whose probability distribution is known

at least approximately.
For example if we know the statistic Z = X−µ

σ/
√
n
follows a standard normal distribution, then. . .

Figure 2: Partition of Z

Let’s review estimation for µ and σ2 as detailed examples.

3.2 Distributions of X and S2

Sample Mean X:

X =
1

n

n∑
i=1

Xi

Theorem:
Let X1, X2, X3,...,Xn be a random sample of size n from a normal distribution with

mean µ and variance σ2. Then X is approximately normal with mean µ and variance σ2

n
.

Central Limit Theorem:
Let X1, X2, X3,...,Xn be a random sample of size n from a distribution with mean µ

and variance σ2. Then for large n, X is approximately normal with mean µ and variance σ2

n
.

One Statistic:
The below random variable is standard normal distributed:

Z =
X − µ

σ/
√
n
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Comment:
Using the method of transforming random variables, when X does not follow a normal distri-

bution, we can obtain X
′
s actual distribution. But when sample size is large, X ′

s distribution
can be approximated as normal distribution.

Sample Variance S2:

S2 :=
1

n− 1

n∑
k=1

(
Xk − X̄

)2
Theorem:

Let X1, X2, X3,...,Xn be a random sample of size n from a normal distribution with mean
µ and variance σ2. Then:

1. The below random variable is chi-squared distributed with n − 1 degrees of freedom:

χ2
n−1 =

(n− 1)S2

σ2

2. The sample mean X and the sample variance S2 are independent.

Mix X and S2:
Let X1, X2, X3,...,Xn be a random sample of size n from a normal distribution with mean

µ and variance σ2. Then the below random variable is T distributed with n − 1 degrees of
freedom:

Tn−1 =
X̄ − µ

S/
√
n
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3.3 Estimate Mean
Overview:

One-sided Confidence Interval:

1. When using the statistic Z = X−µ
σ/

√
n
–

A 100(1 − α)% Upper Confidence Interval µ < L:

L = X +
zα · σ√

n

A 100(1 − α)% Lower Confidence Interval µ > L:

L = X − zα · σ√
n

2. When using the statistic Tn−1 =
X̄−µ
S/

√
n
–

A 100(1 − α)% Upper Confidence Interval µ < L:

L = X +
tα,n−1 · S√

n

A 100(1 − α)% Lower Confidence Interval µ > L:

L = X − tα,n−1 · S√
n

3. When using the statistic Z = X−µ
S/

√
n
, you can conclude by yourself.
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3.4 Estimate Variance
Overview:

One-sided Confidence Interval:
A 100(1 − α)% Upper Confidence Interval:[

0,
(n− 1)S2

χ2
1−α,n−1

]
A 100(1 − α)% Lower Confidence Interval:[

(n− 1)S2

χ2
α,n−1

,∞
)

3.5 Demo: Central Limit Theorem
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