VE401 RECITATION CLASS NOTE7

Estimation

Chen Siyi siyi.chen_chicy@sjtu.edu.cn

1 Parameter Estimation

1.1 Definition

Random Sample:

A random sample of size n from the distribution of X is: a collection of n independent random variables X_1, \ldots, X_n , each with the same distribution as X.

Parameter θ :

A constant value, but always unknown, and we want to estimate its value. Example: mean μ of the variable X.

Statistic:

A random variable derived from a random sample of a population. Example: sample mean \overline{X} of a random sample.

Estimator $\hat{\theta}$:

A statistic used to estimate a parameter. It's also a random sample.

Point Estimate:

The **specific value** of the statistic.

1.2 Bias and MSE

When estimating parameters, we wish the estimation can be more precise. So we wish the estimator $\hat{\theta}$ is:

- 1. having small difference from the parameter θ
- 2. having small variance $Var[\widehat{\theta}]$

Bias:

 $E[\theta] - \hat{\theta}$

Unbiased:

 $E[\theta] = \hat{\theta}$

Mean Square Error:

$$MSE(\widehat{\theta}) = E\left[(\widehat{\theta} - E[\widehat{\theta}])^2\right] + (\theta - E(\widehat{\theta}))^2$$
$$= Var \widehat{\theta} + (bias)^2$$

Comment:

- 1. Bias is only a measurement of our first expectation on θ .
- 2. MSE measures the overall quality of an estimator.
- 3. So in general, unbiased estimators are preferred but sometimes biased estimators are used.

1.3 Estimators for μ and σ^2

Sample Mean:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

- 1. $E[\overline{X}] = \mu$, so \overline{X} is an unbiased estimator of μ
- 2. $Var[\overline{X}] = \frac{\sigma^2}{n}$
- 3. $\mathrm{MSE}(\overline{X}) = Var[\overline{X}]$, so MSE can be deduced by choosing a larger sample size.

Sample Variance:

$$S^{2} := \frac{1}{n-1} \sum_{k=1}^{n} (X_{k} - \bar{X})^{2}$$

1. $E[S^2] = \sigma^2$, so S^2 is an unbiased estimator of σ^2 .

Comments:

- 1. The above properties exist no matter what kind of distributions \overline{X} and S^2 have.
- 2. For point estimate, not necessary to know their distributions.
- 3. For interval estimation later, we need to analyze their distribution.

2 Find Estimator for Parameter

2.1 The Method of Moments

Recall Moments: k^{th} moment of X: $E[X^k]$

Theorem:

$$\widehat{\mathrm{E}[X^k]} = \frac{1}{n} \sum_{i=1}^n x_i^k$$

This is an unbiased estimator for $E[X^k]$. Simply means $E[\frac{1}{n}\sum_{i=1}^n x_i^k] = E[X^k]$

General Steps:

- 1. Express a parameter in terms of moments, such as $Var[X] = E[X^2] E[X]^2$.
- 2. Insert the estimators for these moments to obtain an estimator for the parameter.

Comment:

The found estimators may not be unbiased.

2.2 The Method of Maximum Likelihood

Assumption:

- 1. X_{θ} is a random variable, whose PDF can be written out with an unknown parameter θ as $f_{X_{\theta}}$.
- 2. $X_1, X_2, X_3,...,X_n$ is a random sample.
- 3. $x_1, x_2, x_3,...,x_n$ are the "yielded" values of the random sample. Which we consider as constant in the below steps.

General Steps:

1. Define the likelihood function L by

$$L(\theta) = \prod_{i=1}^{n} f_{X_{\theta}}(x_i)$$

2. Find the expression for θ of $(x_1, x_2, ..., x_n)$ that maximizes $L(\theta)$. This can also be done by maximizing $ln(L(\theta))$

3. In the founded expression, replace θ with $\widehat{\theta}$, replace $(x_1, x_2, ..., x_n)$ with $(X_1, X_2, X_3, ..., X_n)$. Then we obtain the maximum likelihood estimator $\widehat{\theta}$.

Comment:

- 1. Generally we do not need $(x_1, x_2, ..., x_n)$ to be concrete known numbers, but we treat the "yielded" values as constant, in our steps finding the expression for θ .
- 2. Since what we generally find is an expression, we define the estimator $\widehat{\theta}$ (which is a random variable) based on the expression obtained.
- 3. A point estimate can be obtained by putting the observed values of $(x_1, x_2, ..., x_n)$ into the expression for $\widehat{\theta}$ and calculate.

Question: Find Estimator for exp.

Recall the exponential distribution has PDE: $f_{\beta}(x) = \begin{cases} \beta e^{-\beta x}, & x > 0 \\ 0, & x \leq 0 \end{cases}$

- 1. Find an estimator for β using the method of maximum likelihood.
- 2. Find an estimator for β^2 using the method of maximum likelihood if $f_{\beta}(x) = \frac{x}{\beta^2}e^{-\frac{x^2}{2\beta^2}}$.

^{*} In real-life application, when exp. distribution is used to describe failure density, we always not wait for all machines to fail. So there's another method. See reference 1 and 2.

Answer: Find Estimator for exp.

1. Assume a random sample yields values $(x_1, x_2, ..., x_n)$.

$$L(\beta) = \beta^n e^{-\beta(x_1 + x_2 + \dots + x_n)}$$

$$\frac{d(L\beta)}{d\beta} = \beta^{n-1}e^{-\beta(x_1+x_2+...+x_n)}(n-\beta(x_1+x_2+...+x_n))$$

So $L(\beta)$ gets its maximum when:

$$\beta = \frac{n}{x_1 + x_2 + \dots + x_n} = \frac{1}{\overline{x}}$$

Therefore the estimator is:

$$\widehat{\beta} = \frac{1}{\overline{X}}$$

2. Be careful you view β^2 as a whole. You can choose to replace $\beta^2 = s$ and then find \hat{s} .

The process is similar, but you may need to use ln(L(s)). The result is:

$$\widehat{\beta^2} = \frac{\overline{X^2}}{2}$$

2.3 Failure of the Methods

Question: German Tank Problem

In world war 2, the Allies want to know the number of the German tanks. Suppose the German mark their tanks with positive integers form 1 to N, if there are totally N German tanks. After a battle, the Allies checked the destroyed 4 German tanks' numbers, finding the numbers are: 5, 7, 2, 19.

Problem: Estimate N.

Try to solve this problem using the method of moments, and the method of most likelihood. What have you noticed?

Answer: German Tank Problem

Both methods will fail.

- 1. Method of Moments: N=2E[X], $\widehat{E[X]}=\widehat{\mu}=\overline{X}$. So $\widehat{N}=2\overline{X}$ Then the point estimate gives: $N=2\overline{x}=16.5$.
- 2. Method of Maximum Likelihood: $L(N) = (\frac{1}{N})^N$, $\frac{d(\ln(LN))}{dN} = \ln \frac{1}{N} 1$ So the smaller N, the larger L(N). Notice N $\leq \max X_i$. N = $\max X_i$. Then the point estimate gives: $N = 2\overline{x} = 19$.

Both ridiculous. So these two method might fail together.

How to solve the GTP? See References:

- 1. https://en.wikipedia.org/wiki/German_tank_problem
- 2. Reference 3, page 23-25

3 Interval Estimation

3.1 Confidence Interval

Confidence Interval:

Let $0 \le \alpha \le 1$. A $100(1 - \alpha)\%$ confidence interval for a parameter θ is an interval $[L_1, L_2]$ such that

$$P[L_1 \le \theta \le L_2] = 1 - \alpha$$

Centered Confidence Interval:

$$P[\theta < L_1] = P[\theta > L_2] = \frac{\alpha}{2}$$

One-sided Confidence Interval:

A $100(1 - \alpha)\%$ Upper Confidence Interval $\theta < L$. With the upper confidence bound satisfying:

$$P[\theta < L_1] = 1 - \alpha$$

A 100(1 - α)% Lower Confidence Interval $\theta > L$.

With the upper confidence bound satisfying:

$$P[\theta > L_1] = 1 - \alpha$$

Figure 1: Random Intervals

Question: Random Intervals

What does $100(1 - \alpha)\%$ stands for? Is the below statement right?

We have generated a numerical interval L_0 for θ , from a concrete data, there are $100(1 - \alpha)\%$ probability that $\theta \in L_0$.

Answer: Random Intervals

Of course wrong. Let's think about an unfair coin...

- 1. Flow a coin: generate a numerical interval from a concrete data.
- 2. Coin turn head: The generated interval contains θ .
- 3. Coin turn tail: The generated interval excludes θ .

At this stage, we do not know the exact value of θ , we just can not know exactly whether a generated interval contains θ .

Like you flow a coin, but only the god sees the result.

The true meaning for $100(1-\alpha)\%$ is:

Of all the intervals constructed for θ by using $[L_1, L_2]$, $100(1 - \alpha)\%$ of them contain $\theta \in L_0$.

Introduction:

Generally, to construct confidence intervals for θ , we need to:

Find a statistic whose expression involves θ , and whose probability distribution is known at least approximately.

For example if we know the statistic $Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$ follows a standard normal distribution, then...

Figure 2: Partition of Z

Let's review estimation for μ and σ^2 as detailed examples.

3.2 Distributions of \overline{X} and S^2

Sample Mean \overline{X} :

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Theorem:

Let $X_1, X_2, X_3,...,X_n$ be a random sample of size n from a <u>normal distribution</u> with mean μ and variance σ^2 . Then \overline{X} is approximately normal with mean μ and variance $\frac{\sigma^2}{n}$.

Central Limit Theorem:

Let $X_1, X_2, X_3,...,X_n$ be a random sample of size n from a distribution with mean μ and variance σ^2 . Then for large n, \overline{X} is approximately normal with mean μ and variance $\frac{\sigma^2}{n}$.

One Statistic:

The below random variable is standard normal distributed:

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

Comment:

Using the method of transforming random variables, when X does not follow a normal distribution, we can obtain $\overline{X}'s$ actual distribution. But when sample size is large, $\overline{X}'s$ distribution can be approximated as normal distribution.

Sample Variance S^2 :

$$S^{2} := \frac{1}{n-1} \sum_{k=1}^{n} (X_{k} - \bar{X})^{2}$$

Theorem:

Let $X_1, X_2, X_3,...,X_n$ be a random sample of size n from a <u>normal distribution</u> with mean μ and variance σ^2 . Then:

1. The below random variable is chi-squared distributed with n-1 degrees of freedom:

$$\chi_{n-1}^2 = \frac{(n-1)S^2}{\sigma^2}$$

2. The sample mean \overline{X} and the sample variance S^2 are independent.

Mix \overline{X} and S^2 :

Let $X_1, X_2, X_3,...,X_n$ be a random sample of size n from a <u>normal distribution</u> with mean μ and variance σ^2 . Then the below random variable is T distributed with n - 1 degrees of freedom:

$$T_{n-1} = \frac{\bar{X} - \mu}{S/\sqrt{n}}$$

3.3 Estimate Mean

Overview:

Distribution of X_i	Sample size n	Variance σ^2	Statistic	1-lpha confidence interval
$X_i \sim \mathcal{N}(\mu, \sigma)$	any	known	$rac{\overline{X} - \mu}{rac{\sigma}{\sqrt{n}}} \sim \mathcal{N}(0,1)$	$\left[\overline{X}-z_{rac{lpha}{2}rac{\sigma}{\sqrt{n}},\overline{X}+z_{rac{lpha}{2}rac{\sigma}{\sqrt{n}}} ight]$
$X_i \sim$ any distribution	large	known	$rac{\overline{X} - \mu}{rac{\sigma}{\sqrt{n}}} \sim \mathcal{N}(0,1)$	$\left[\overline{X}-z_{rac{lpha}{2}rac{\sigma}{\sqrt{n}},\overline{X}+z_{rac{lpha}{2}rac{\sigma}{\sqrt{n}}} ight]$
$X_i \sim$ any distribution	large	unknown	$rac{\overline{X} - \mu}{rac{s}{\sqrt{n}}} \sim \mathcal{N}(0,1)$	$\left[\overline{X}-z_{rac{lpha}{2}rac{s}{\sqrt{n}},\overline{X}+z_{rac{lpha}{2}rac{s}{\sqrt{n}}} ight]$
$X_i \sim \mathcal{N}(\mu, \sigma)$	small	unknown	$rac{\overline{X}-\mu}{rac{s}{\sqrt{n}}}\sim t_{n-1}$	$\left[\overline{X} - t_{rac{lpha}{2}rac{s}{\sqrt{n}}, \overline{X} + t_{rac{lpha}{2}rac{s}{\sqrt{n}}} ight]$
$X_i \sim$ any distribution	small	known or unknown	Go home!	Go home!

One-sided Confidence Interval:

1. When using the statistic $Z = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}}$

A 100(1 - $\alpha)\%$ Upper Confidence Interval $\mu < L$:

$$L = \overline{X} + \frac{z_{\alpha} \cdot \sigma}{\sqrt{n}}$$

A $100(1-\alpha)\%$ Lower Confidence Interval $\mu > L$:

$$L = \overline{X} - \frac{z_{\alpha} \cdot \sigma}{\sqrt{n}}$$

2. When using the statistic $T_{n-1} = \frac{\bar{X} - \mu}{S/\sqrt{n}}$

A $100(1 - \alpha)\%$ Upper Confidence Interval $\mu < L$:

$$L = \overline{X} + \frac{t_{\alpha, n-1} \cdot S}{\sqrt{n}}$$

A $100(1-\alpha)\%$ Lower Confidence Interval $\mu > L$:

$$L = \overline{X} - \frac{t_{\alpha, n-1} \cdot S}{\sqrt{n}}$$

3. When using the statistic $Z = \frac{\overline{X} - \mu}{S/\sqrt{n}}$, you can conclude by yourself.

3.4 Estimate Variance

Overview:

Distribution of X_i	Sample size n	Mean μ	Statistic	1-lpha confidence interval
$X_i \sim \mathcal{N}(\mu, \sigma)$	any	known or unknown	$\frac{s^2(n-1)}{\sigma^2} \sim \chi^2_{n-1}$	$\left[rac{s^2(n-1)}{\chi_2^2}, rac{s^2(n-1)}{\chi_1^2} ight]$

One-sided Confidence Interval:

A $100(1-\alpha)\%$ Upper Confidence Interval:

$$\left[0, \frac{(n-1)S^2}{\chi^2_{1-\alpha, n-1}}\right]$$

A $100(1-\alpha)\%$ Lower Confidence Interval:

$$\left[\frac{(n-1)S^2}{\chi^2_{\alpha,n-1}},\infty\right)$$

3.5 Demo: Central Limit Theorem