VE401 RECITATION CLASS NOTE5 Transformation of Random Variables and Reliability

Chen Siyi siyi.chen_chicy@sjtu.edu.cn

1 Transformation of Random Variables

Theorem:

Let (X, f_X) be a continuous multivariate random variable and let $\varphi : \mathbb{R}^n \to \mathbb{R}^n$ be a differentiable, bijective map with inverse φ^{-1} . Then $Y = \phi \circ X$ is a continuous multivariate random variable with density:

$$f_Y(y) = f_X \circ \varphi^{-1}(y) \cdot \left| \det D\varphi^{-1}(y) \right|$$

where $D\varphi^1$ is the Jacobian of φ^1 :

$$\boldsymbol{D}\varphi^{-1} = \begin{pmatrix} \frac{\partial \varphi_1^{-1}}{\partial y_1} & \frac{\partial \varphi_1^{-1}}{\partial y_2} & \dots & \frac{\partial \varphi_1^{-1}}{\partial y_n} \\ \frac{\partial \varphi_2^{-1}}{\partial y_1} & \frac{\partial \varphi_2^{-1}}{\partial y_2} & & \frac{\partial \varphi_2^{-1}}{\partial y_n} \\ \vdots & & \ddots & \vdots \\ \frac{\partial \varphi_n^{-1}}{\partial y_1} & \frac{\partial \varphi_n^{-1}}{\partial y_2} & \dots & \frac{\partial \varphi_n^{-1}}{\partial y_n} \end{pmatrix}$$

Comments:

- 1. Notice this theorem is for differentiable and bijective φ
- 2. Many other types of transformation can be calculated based on this
- 3. We will also discuss later interesting transformation can not use this theorem

1.1 Bivariate Random Variables

First recall in class, we have proved:

Theorem:

Let ((X , Y), f_{XY}) be a continuous bivariate random variable. Let U = X /Y . Then the density f_U of U is given by:

$$f_U(u) = \int_{-\infty}^{\infty} f_{XY}(uv, v) \cdot |v| dv$$

Comments:

- 1. It's important that you know how to prove.
- 2. The general idea is you first define $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$ to get a joint density function of f_{UV} , and then calculate the marginal density for U.

Next let's see more cases.

Question: Transform Bivariate Random Variables

Let ((X , Y), f_{XY}) be a continuous bivariate random variable. Calculate the density f_U of U when:

$$1. U = X + Y$$

2. U = XY

1. U = X + Y:

$$f_U(u) = \int_{-\infty}^{\infty} f_{XY}(u - v, v) dv$$

2. U = XY
$$f_U(u) = \int_{-\infty}^{\infty} f_{XY}(\frac{u}{v}, v) \cdot |\frac{1}{v}| dv$$

Question: Further discussion when U = X + Y

- 1. When X and Y are independent, further simplify your result for $f_U(u)$, U = X + Y.
- 2. When X and Y are independent, U = X + Y, it is given that $m_U(t) = m_X(t)m_Y(t)$. (If you are interested in the proof, you can discuss with me later.)

Can you use this to prove that:

A: The sum of two i.i.d exponential distribution random variables is gamma distributed.

B: The sum of two independent gamma distribution random variables with the same parameter β is still gamma distributed with parameters $(\alpha_1 + \alpha_2, \beta)$.

Answer: Further discussion when $U = \overline{X + I}$

- 1. $f_U(u) = \int_{-\infty}^{\infty} f_Y(u-v) f_X(v) dv = f_X * f_Y.$
- 2. First calculate $m_U(t) = m_X(t)m_Y(t)$; second by the uniqueness of MGF, you can read out the distribution of U.

Do notice there are restrictions in the problem:

A: X and Y are two i.i.d exponential distribution random variables.

$$m_X(t) = \left(1 - \frac{t}{\beta}\right)^{-1}$$
$$m_Y(t) = \left(1 - \frac{t}{\beta}\right)^{-1}$$
$$m_U(t) = \left(1 - \frac{t}{\beta}\right)^{-2}$$

B: Two independent gamma distribution random variables with the same parameter β .

$$m_X(t) = \left(1 - \frac{t}{\beta}\right)^{-\alpha_1}$$
$$m_Y(t) = \left(1 - \frac{t}{\beta}\right)^{-\alpha_2}$$
$$m_U(t) = \left(1 - \frac{t}{\beta}\right)^{-\alpha_1 - \alpha_2}$$

1.2 Chi Distribution χ_n

Definition:

$$\chi_n := \sqrt{\sum_{i=1}^n Z_i^2}$$
$$f_{\chi_n}(y) = \frac{2}{2^{n/2} \Gamma\left(\frac{n}{2}\right)} y^{n-1} e^{-y^2/2}$$

Interpretation:

Suppose all Z_i are independent and follow the standard normal distribution. $z = (z_1, ..., z_n)$ is a point's position. Then the distance of a point from the origin follows a χ_n distribution.

1.3 *Discussion: Imagine χ_n and χ_n^2 Distribution

Let's discuss and understand the χ_n and χ_n^2 Distribution from the below graph.

1. First understand the independence of X and Y

Hint: 1. You can understand using our previous introduction of bivariate normal distribution and this 3D graph; 2. You can also understand in a general sense of independence graphically.

- 2. Second understand the Chi variable $\sqrt{X^2 + Y^2}$
- 3. Third understand the PDF f_{χ_n}

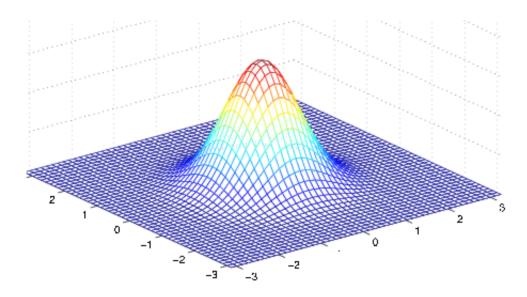


Figure 1: Imagine the Chi Distribution

And the $\chi_n^2 = \sum_{i=1}^n Z_i^2$ has similar interpretations.

2 Reliability

2.1 A Single Unit

The time for A to fail is described as a continuous random variable T_A .

Failure Density:

The probability density function of T_A is called the failure density f_A . Then we can also define a CDF F_A .

Reliability Function:

The probability that A is still working at time t is described with the reliability function:

$$R_A(t) = 1 - F_A(0)$$

Hazard Rate:

The hazard rate is defined as:

$$\varrho_A(t) = \lim_{\Delta t \to 0} \frac{P[t \le T \le t + \Delta t | t \le T]}{\Delta t}$$
$$= \lim_{\Delta t \to 0} \frac{P[t \le T \le t + \Delta t]}{P[T \ge t] \cdot \Delta t}$$
$$= f_A(t) / R_A(t)$$

Interpret Hazard Rate:

Given unit A keeps working before time t, the failure "density" for A at time t.

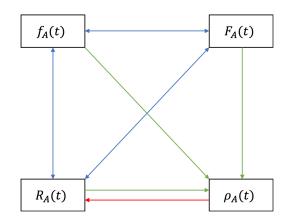
 $\rho_A(t)$ decreasing: As time goes by, a working unit will be less likely to occur.

 $\rho_A(t)$ steady: As time goes by, a working unit will be equally likely to occur.

 $\rho_A(t)$ increasing: As time goes by, a working unit will be more likely to occur. **Property:**

$$R(t) = e^{-\int_0^t \varrho(x)dx}$$

*Draw all the equations relating the four in the below figure:



2.2 Weibull Distribution

PDF:

$$f(x) = \begin{cases} \alpha \beta x^{\beta - 1} e^{-\alpha x^{\beta}}, & x > 0 \\ 0, & \text{otherwise} \end{cases} \quad \alpha, \beta > 0$$

Features:

1. $E[X] = \alpha^{-1/\beta} \Gamma(1 + 1/\beta)$

2. Var $X = \alpha^{-2/\beta} \Gamma(1 + 2/\beta) - \mu^2$

If f_A follows Weibull Distribution:

1.
$$\varrho_A(t) = \alpha \beta t^{\beta - 1}$$

2.
$$R_A(t) = e^{-\alpha t^{\beta}}$$

Comments:

When $\beta = 1$, f_X becomes exactly the PDF for an exponential distributed random variable. The exponential distribution is memoryless.

Also when $\beta = 1$, $\rho_A(t)$ is constant.

Now you can link them together. Recall that we have discussed a machine won't "remember" it has worked for some period in a precious recitation class.

2.3 A System

A series system with k components:

$$R_s(t) = \prod_{i=1}^k R_i(t)$$

A parallel system with k components:

$$R_p(t) = 1 - P[$$
 all components fail before $t] = 1 - \prod_{i=1}^{k} (1 - R_i(t))$

2.4 *Discussion: System & Transforming Multivariate RVs

Question: A System

Let S be a series system of two components A and B. It is known that component the failure density of A and B are both exponential distributed with parameter β_1 and β_2 . Then:

- 1. What is the reliability function of the system S?
- 2. Observe $R_S(t)$, what is the failure density of S?

Answer: A System

1. $R_S(t) = e^{-(\beta_1 + \beta_2)t}$

2.
$$f_S(t) = -R'_S(t) = (\beta_1 + \beta_2)e^{-(\beta_1 + \beta_2)t}$$

Which follows the exponential distribution.

Question: System-Transformation of Variables 1

 X_1 and X_2 are two independent random variables following the exponential distribution with parameter β_1 and β_2 . Y = min{ X_1, X_2 }. What is the PDF $f_Y(y)$? Answer: System-Transformation of Variables 1

Using the idea of series system. Define three variables. X_1 the fail time of component A, X_2 the fail time of component B, Y the fail time of system S. When any component fails, the system will fail. So $Y = \min\{X_1, X_2\}$. Based on the previous question, we have: $f_Y(y) = (\beta_1 + \beta_2)e^{-(\beta_1 + \beta_2)y}$

Question: System-Transformation of Variables 2

For random variables Y, X_1 , and X_2 , how will you describe the transformation using a system if:

1. $Y = X_1 + X_2$

2. Y = max{ X_1, X_2 }

You can draw it.

Answer: System-Transformation of Variables 2

- 1. $Y = X_1 + X_2$: A back-up system (with a switch).
- 2. Y = max{ X_1, X_2 }: A parallel system.