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1 Definition

Discrete:
Let S be a sample space and ) a countable subset of R”. A discrete multivariate random
variable is a map

X:5—=0Q
together with a function fx : 0 — R with the properties that

(i) fx(z) =0 for all z = (z4,...,x,) € Q2 and
(i) Dpen fx(2) =1

Continuous: Let S be a sample space. A continuous multivariate random variable is a map
X:S—=R"
together with a function fx : R” — R with the properties that
(i) fx(xz) >0 for all x = (21, ...,2,) € R" and

(ii) fgn fx(z)dz =1

2 Density and Independence

2.1 Marginal Density

ka (ka) = Z fX (:L‘l, e ,[L‘n)

TLyeesTh—15T k4150 Tn

fx, (zx) = fx(x)dzy ... deg_1drgyy ... dz,
Rn—l

2.2 Conditional Density

. fX1X2 (xh .172)

fxijes (1) = Fxo (@2) with fx, (¥2) >0
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2.3 Independence

Two continuous random variables are independent if:

fx (@1, 22) = fx, (21) - fx, (72)

A full set of n components of a multivariate random variable is independent if:

Ix (@1, 20) = fx (1) [x, (%)

Question: Visualization

X and Y are continuous random variables. X takes on values between 0 and 2 while Y
takes on values between 0 and 1. Their joint PDF is indicated below in the graph.
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Figure 1: The exponential distribution

1. Are X and Y independent?

2. Find fx(x) and fy|X(y|05)
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Answer: Visualization

1. If X and Y to be independent, any observation of X should not give any information
on Y. But in the graph, we see X is observed to be equal to 0, then Y must be 0.
You can also describe it mathematically:

fxx)(0,0) # fx(0) - fy(0)

Since fixy(0,0) = 3, fx(0) =0, fy(0) =

You can also think in other ways...

r/2, ifo<z<l1
fx(x)=4¢ —3z/243, ifl<a<2
0, otherwise

2, f0<y<1/2
0, otherwise

Frix0103) = {

3 Expectation

Definition:
E[Xi]
BIX] = :
E[X,]
Zil?kka mk) = Y anfx(x)
€
R n
Property:

For a function ¢ : R" — R:

BlpoX] =3 ¢@)fx(e) o ElpoX]= [ plo)fxle)ds

€N

4 Variance and Covariance

4.1 Definition

Covariance
Cov[X,Y] = E[(X — E[X])(Y — E[Y])] = E[XY] — E[X]E[Y]

3
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which comes from:

Var[X + Y] =E[(X +VY) - E[X +Y])?
= E[((X = E[X]) + (Y — E[Y]))?]
= E[(X - E[X])* + (Y — E[Y))* + 2(X — E[X])(Y — E[Y])]
= Var[X] + Var[Y] + 2E[(X — E[X])(Y — E[Y])]
Variance

The covariance matrix for a multivariate random variable X is defined as:

Var [Xl] Cov [Xla XQ] ce Cov [Xl, Xn]

Var[X] = Cov [).(1, X Vaf [X5]

: . " Cov [ X1, Xy
Cov [ X1, X,] Cov [X,—1, X,] Var [ X,,]

4.2 Property
1. Cov[X,Y]=Cov[Y,X]
2. Cov[X,X]=Var[X]

3. Var[CX] = CVar[X]CT, C € Mat(n x n; R) is a constant matrix with real coefficients.

5 *Discussion: Covariance-Linearity-Independence

Covariance and Independence:
1. X and Y are independent — Cov[X, Y] = 0.
2. CovX, Y] =0 = X and Y are independent.

Therefore, covariance is not a measure of independence.
Then, what does covariance measure?

Covariance and Linearity:
Covariance measures ’linearity”. In other words, it shows how much is the relation-
ship between X and Y is like the form 7Y = a + bX".

Let’s first have a mathematical taste of the relationship of covariance and linearity. (You do
not need to understand exactly clear now.)

We wish to find a best estimation of the linear relationship between variables X and Y, such
that the errors between a + bX and Y are minimized. Also notice hopefully we wish b # 0
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to satisfy this is a "linear relationship”. The method we choose is to find such a pair of (a, b)
making e = E[(Y — (a + bX))?] minimized. Since e is a function of a and b:

e=E[Y — (a+bX))?] = BE(Y?) + b E(X?) + a®> — 20E(XY) + 2abE(X) — 2aE(Y)

To make e minimized, we simply make

{ §_ =20+ 2bE(X) — 2E(Y) =0
5 = 20E (X?) = 2B(XY) +2aE(X) = 0

Solve the above equations, we obtain:

h— Cov[X,Y]
T VarlX]
@ = E(Y) - bE[X]

Now we notice, when Cov[X, Y] = 0, b = 0; showing X and Y are unlikely to have a linear

relationship.
Just relax, let’s see a concrete example.

X is a continuous random variable with:

@ ={ 5 i
Let Y = X2 Then:
1. What is Cov[X, Y]?
2. Are X and Y independent?

3. Are X and Y linearly related?
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Answer: Covariance, Linearity, and Independence

By definition, Cou[X,Y] = E[XY] — E[X]E[Y] = E[X?] — E[X]E[X?]
And recall, E[X*] := [7 2% fx(2)
Then it’s clear E[X] = E[X?3] = 0. Hence:

1. Cov[X, Y] =0
2. X and Y are dependent

3. X and Y are not linearly related

6 Pearson Correlation Coefficient

Definition
~ Cov[X,Y]
VVar X|Var[Y]

This ideg comes from ”the covariance of the~ stgndardized X and Y”. First standardize X
and Y to X and Y, and Then calculate Cov[X,Y].

PXY

Cov[X,Y] = E[XY] — E[X]E[Y]
_ Cov[X,Y]
\/Var[X] Var[Y]

So you can interpret pxy as the covariance of the standardized variables, and it is a
measure of linearity.

Property
1. —1< pxy <1

2. |pxy| = 1 if and only if there exist numbers Gy, 51 € R, 81 # 0, such that almost surely
Y = 0o+ f1X.

3. Further pxy = 1 leads to almost surely X-Y = 0, and pxy = —1 leads to almost surely
X+Y =0
6.1 Fisher Transformation

Var[X —Y] = 2—2pxy, and Var[X +Y] = 2+ 2pxy. The Fisher transformation is defined
as:

In(

Var[)?-l—?] 1 (1+pxy

—— ) =—1In = Artanh eR
Var[X — Y]) 2 ) (pxy)

1—pxy
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pxy = tanh (ln <U)~(—“7))
Ox-v

1. The closer |pxy| is to 1, the more likely X and Y have a linear relationship.

Then we also have:

6.2 pxy and Linearity

2. Positive correlation: pyy > 0, Var[X — Y] < Var[X +Y]. X and Y tend to be more
like X =Y, in other words, more positively related. When X is larger, then Y is likely
to be larger.

3. Negative correlation: pyy < 0, X and Y tend to be more like X = —Y. When X is
larger, then Y is likely to be smaller.

Figure 2: The Pearson Correlation Coefficient

6.3 Bivariate Normal Distribution

X and Y should each follow a normal distribution, but may be not independent. Then the
joint density function is:

x— 2 xr— y— _ 2
frev(ony) = —— Lot () (=) (5 (5]
2roxoy\/1 — 0?

Property:
L. -1<p<1 p=pxy
2. ux = E[X], 6% = Var[X]. Same for Y.

3. p=0<«= X and Y are independent. (Notice this is special.)
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7 Hypergeometric Distribution

Interpretation:

A total of N balls, r red and N — r black. Draw n balls out without putting back. Assume r >
nand N —r > n. The random variable X describes the number of red balls in the n drawn balls.

Comment:
It is a sequence of identical but not independent Bernoulli trials. Each draw is a Bernoulli

trial with p = %.

Features:

1. N, r, n are the parameters

2. fy(z) = <;><"N—_%’r>
()

_ o1 N—r N—n
4. Var X = ng =77

3. E[X]=ng

Approximate Hypergeometric with Binomial:

Recall for a Binomial distribution, E[X]| = np, Var X = npq.
If the sampling fraction 2 is small (less than 0.05), we can use E[X] = nt = p, n¥=r = ¢

to estimate the Hypergeometric distribution with a Binomial distribution.
We can interpret as: when the sample size n is small, it does not affect the left balls much.
So, the trials are approximately independent.

There are totally N balls, r red and N-r black. We draw 2 balls out one by one without
putting back. And we define three Bernoulli random variables representing the below
events:

X1: Red ball at the first draw.

Xs: Red ball at the second draw.

X3: Black ball at the second draw.

Then, what is Cov[X;, X5, and what is Cov|[X;, X3]7

And, what is px, x,, and what is px, x,?
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Answer: Covariance and Hypergeometric

We have calculated Cov[X7, X5] in class.

Cov[Xy, Xs] = E[X1 X5] — B[X1]E[X;] = - 55 < 0.
Similarly since X X3 is still a Bernoulli trial, hence E[X; X3] = P[X; =1 and X3 =1] =
r N—r

N N-1"°

Then Cov[X7, X3] = E[X;X,] — E[X{]E[X;] = %]C((JJV\T:TI)) > 0.

Further with Var[X;] = Var[X,] = £(1 — £) and Var[Xs] = 2=2(1 — £22). We obtain:

N N
pxix, = — 7 < 0, negative correlated.
PX1 X5 = ﬁ > 0, positive correlated.

This also help you understand the positive and negative pxy better.

1. When X; = 1, X is more likely to be 0, and X3 is more likely to be 1.

2. When N becomes larger, |px, x,| and |px, x,| become smaller. So the effect of X; on
Xy and X3 becomes less. When N is large enough, p is close to 0, and we estimate
the two trials as independent.



