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1 Definition
Discrete:

Let S be a sample space and Ω a countable subset of Rn. A discrete multivariate random
variable is a map

X : S → Ω

together with a function fX : Ω → R with the properties that

(i) fX(x) ⩾ 0 for all x = (x1, ..., xn) ∈ Ω and

(ii)
∑

x∈Ω fX(x) = 1

Continuous: Let S be a sample space. A continuous multivariate random variable is a map

X : S → Rn

together with a function fX : Rn → R with the properties that

(i) fX(x) ⩾ 0 for all x = (x1, ..., xn) ∈ Rn and

(ii)
∫
Rn fX(x)dx = 1

2 Density and Independence
2.1 Marginal Density

fXk
(xk) =

∑
x1,...,xk−1,xk+1,...,xn

fX (x1, . . . , xn)

fXk
(xk) =

∫
Rn−1

fX(x)dx1 . . . dxk−1dxk+1 . . . dxn

2.2 Conditional Density

fX1|x2 (x1) :=
fX1X2 (x1, x2)

fX2 (x2)
with fX2 (x2) > 0
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2.3 Independence 2 DENSITY AND INDEPENDENCE

2.3 Independence
Two continuous random variables are independent if:

fX(x1, x2) = fX1(x1) · fX2(x2)

A full set of n components of a multivariate random variable is independent if:

fX(x1, ..., xn) = fX1(x1)... · fXn(xn)

Question: Visualization

X and Y are continuous random variables. X takes on values between 0 and 2 while Y
takes on values between 0 and 1. Their joint PDF is indicated below in the graph.

Figure 1: The exponential distribution

1. Are X and Y independent?

2. Find fX(x) and fY |X(y|0.5).
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4 VARIANCE AND COVARIANCE

Answer: Visualization

1. If X and Y to be independent, any observation of X should not give any information
on Y. But in the graph, we see X is observed to be equal to 0, then Y must be 0.
You can also describe it mathematically:

f(X,Y )(0, 0) ̸= fX(0) · fY (0)

Since f(X,Y )(0, 0) =
1
2
, fX(0) = 0, fY (0) = 2.

You can also think in other ways...

2.

fX(x) =


x/2, if 0 ≤ x ≤ 1
−3x/2 + 3, if 1 < x ≤ 2
0, otherwise

fY |X(y|0.5) =
{

2, if 0 ≤ y ≤ 1/2
0, otherwise

3 Expectation
Definition:

E[X] =

 E [X1]
...

E [Xn]


E [Xk] =

∑
xk

xkfXk
(xk) =

∑
x∈Ω

xkfX(x)

E [Xk] =

∫
R
xkfXk

(xk) dxk =

∫
Rn

xkfX(x)dx

Property:
For a function φ : Rn → R:

E[φ ◦X] =
∑
x∈Ω

φ(x)fX(x), or E[φ ◦X] =

∫
Rn

φ(x)fX(x)dx

4 Variance and Covariance
4.1 Definition
Covariance

Cov[X,Y ] = E[(X − E[X])(Y − E[Y ])] = E[XY ]− E[X]E[Y ]
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4.2 Property 5 *DISCUSSION: COVARIANCE-LINEARITY-INDEPENDENCE

which comes from:

Var[X + Y ] = E
[
((X + Y )− E[X + Y ])2

]
= E

[
((X − E[X]) + (Y − E[Y ]))2

]
= E

[
(X − E[X])2 + (Y − E[Y ])2 + 2(X − E[X])(Y − E[Y ])

]
= Var[X] + Var[Y ] + 2E[(X − E[X])(Y − E[Y ])]

Variance

The covariance matrix for a multivariate random variable X is defined as:

Var[X] =


Var [X1] Cov [X1, X2] . . . Cov [X1, Xn]

Cov [X1, X2] Var [X2]
. . . ...

... . . . . . . Cov [Xn−1, Xn]
Cov [X1, Xn] . . . Cov [Xn−1, Xn] Var [Xn]


4.2 Property

1. Cov[X,Y]=Cov[Y,X]

2. Cov[X,X]=Var[X]

3. Var[CX] = CVar[X]CT , C ∈ Mat(n × n; R) is a constant matrix with real coefficients.

5 *Discussion: Covariance-Linearity-Independence

Covariance and Independence:

1. X and Y are independent → Cov[X, Y] = 0.

2. Cov[X, Y] = 0 ⇏ X and Y are independent.

Therefore, covariance is not a measure of independence.
Then, what does covariance measure?

Covariance and Linearity:
Covariance measures ”linearity”. In other words, it shows how much is the relation-

ship between X and Y is like the form ”Y = a + bX”.

Let’s first have a mathematical taste of the relationship of covariance and linearity. (You do
not need to understand exactly clear now.)

We wish to find a best estimation of the linear relationship between variables X and Y, such
that the errors between a + bX and Y are minimized. Also notice hopefully we wish b ̸= 0
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5 *DISCUSSION: COVARIANCE-LINEARITY-INDEPENDENCE

to satisfy this is a ”linear relationship”. The method we choose is to find such a pair of (a, b)
making e = E[(Y − (a+ bX))2] minimized. Since e is a function of a and b:

e = E[(Y − (a+ bX))2] = E(Y 2) + b2E(X2) + a2 − 2bE(XY ) + 2abE(X)− 2aE(Y )

To make e minimized, we simply make�{
∂e
∂a

= 2a+ 2bE(X)− 2E(Y ) = 0
∂e
∂b

= 2bE (X2)− 2E(XY ) + 2aE(X) = 0

Solve the above equations, we obtain:{
b = Cov[X,Y ]

V ar[X]

a = E(Y )− bE[X]

Now we notice, when Cov[X, Y] = 0, b = 0; showing X and Y are unlikely to have a linear
relationship.

Just relax, let’s see a concrete example.

Question: Covariance, Linearity, and Independence

X is a continuous random variable with:

fX(x) =

{
1
2
, −1 < x < 1

0, otherwise

Let Y = X2. Then:

1. What is Cov[X, Y]?

2. Are X and Y independent?

3. Are X and Y linearly related?
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6 PEARSON CORRELATION COEFFICIENT

Answer: Covariance, Linearity, and Independence

By definition, Cov[X,Y ] = E[XY ]− E[X]E[Y ] = E[X3]− E[X]E[X2]
And recall, E[Xk] :=

∫∞
−∞ xk · fX(x)

Then it’s clear E[X] = E[X3] = 0. Hence:

1. Cov[X, Y] = 0

2. X and Y are dependent

3. X and Y are not linearly related

6 Pearson Correlation Coefficient

Definition

ρXY =
Cov[X,Y ]√
V ar[X]V ar[Y ]

This idea comes from ”the covariance of the standardized X and Y”. First standardize X
and Y to X̃ and Ỹ , and Then calculate Cov[X̃, Ỹ ].

Cov[X̃, Ỹ ] = E[X̃Ỹ ]− E[X̃]E[Ỹ ]

=
Cov[X,Y ]√
Var[X] Var[Y ]

So you can interpret ρXY as the covariance of the standardized variables, and it is a
measure of linearity.

Property

1. −1⩽ ρXY ⩽1

2. |ρXY | = 1 if and only if there exist numbers β0, β1 ∈ R, β1 ̸= 0, such that almost surely
Y = β0 + β1X.

3. Further ρXY = 1 leads to almost surely X̃ − Ỹ = 0, and ρXY = −1 leads to almost surely
X̃ + Ỹ = 0.

6.1 Fisher Transformation
V ar[X̃ − Ỹ ] = 2− 2ρXY , and V ar[X̃ + Ỹ ] = 2+ 2ρXY . The Fisher transformation is defined

as:

ln(

√
Var[X̃ + Ỹ ]

Var[X̃ − Ỹ ]
) =

1

2
ln

(
1 + ρXY

1− ρXY

)
= Artanh (ρXY ) ∈ R
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6.2 ρXY and Linearity 6 PEARSON CORRELATION COEFFICIENT

Then we also have:
ρXY = tanh

(
ln

(
σX̃+Ỹ

σX̃−Ỹ

))

6.2 ρXY and Linearity
1. The closer |ρXY | is to 1, the more likely X and Y have a linear relationship.

2. Positive correlation: ρXY > 0, V ar[X̃ − Ỹ ] < V ar[X̃ + Ỹ ]. X and Y tend to be more
like X̃ = Ỹ , in other words, more positively related. When X is larger, then Y is likely
to be larger.

3. Negative correlation: ρXY < 0, X and Y tend to be more like X̃ = −Ỹ . When X is
larger, then Y is likely to be smaller.

Figure 2: The Pearson Correlation Coefficient

6.3 Bivariate Normal Distribution
X and Y should each follow a normal distribution, but may be not independent. Then the

joint density function is:

fXY (x, y) =
1

2πσXσY

√
1− ϱ2

e
− 1

2(1−ϱ2)

[(
x−µX
σX

)2
−2ϱ

(
x−µX
σX

)(
y−µY
σY

)
+
(

y−µY
σY

)2
]

Property:

1. −1 < ρ < 1, ρ = ρXY

2. µX = E[X], δ2X = V ar[X]. Same for Y.

3. ρ = 0 ⇐⇒ X and Y are independent. (Notice this is special.)
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7 HYPERGEOMETRIC DISTRIBUTION

7 Hypergeometric Distribution
Interpretation:

A total of N balls, r red and N − r black. Draw n balls out without putting back. Assume r >
n and N − r > n. The random variable X describes the number of red balls in the n drawn balls.

Comment:
It is a sequence of identical but not independent Bernoulli trials. Each draw is a Bernoulli

trial with p = r
N

.

Features:

1. N, r, n are the parameters

2. fX(x) =

 r
x

 N − r
n− x


 N

n


3. E[X]=n r

N

4. VarX = n r
N

N−r
N

N−n
N−1

Approximate Hypergeometric with Binomial:
Recall for a Binomial distribution, E[X] = np, VarX = npq.
If the sampling fraction n

N
is small (less than 0.05), we can use E[X] = n r

N
= p, nN−r

N
= q

to estimate the Hypergeometric distribution with a Binomial distribution.
We can interpret as: when the sample size n is small, it does not affect the left balls much.

So, the trials are approximately independent.

Question: Covariance and Hypergeometric

There are totally N balls, r red and N-r black. We draw 2 balls out one by one without
putting back. And we define three Bernoulli random variables representing the below
events:
X1: Red ball at the first draw.
X2: Red ball at the second draw.
X3: Black ball at the second draw.
Then, what is Cov[X1, X2], and what is Cov[X1, X3]?
And, what is ρX1X2 , and what is ρX1X3?
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7 HYPERGEOMETRIC DISTRIBUTION

Answer: Covariance and Hypergeometric

We have calculated Cov[X1, X2] in class.
Cov[X1, X2] = E[X1X2] − E[X1]E[X2] = - 1

N
r(N−r)
N(N−1)

< 0.
Similarly since X1X3 is still a Bernoulli trial, hence E[X1X3] = P[X1 =1 and X3 =1] =
r
N

N−r
N−1

.
Then Cov[X1, X3] = E[X1X2] − E[X1]E[X2] = 1

N
r(N−r)
N(N−1)

> 0.
Further with V ar[X1] = V ar[X2] =

r
N
(1− r

N
) and V ar[X3] =

N−r
N

(1− N−r
N

). We obtain:
ρX1X2 = − 1

N−1
< 0, negative correlated.

ρX1X3 = 1
N−1

> 0, positive correlated.
This also help you understand the positive and negative ρXY better.

1. When X1 = 1, X2 is more likely to be 0, and X3 is more likely to be 1.

2. When N becomes larger, |ρX1X2| and |ρX1X3| become smaller. So the effect of X1 on
X2 and X3 becomes less. When N is large enough, ρ is close to 0, and we estimate
the two trials as independent.
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