VE401 Recitation Class Note4
 Multivariate Random Variables

Chen Siyi
siyi.chen_chicy@sjtu.edu.cn

1 Definition

Discrete:
Let S be a sample space and Ω a countable subset of \mathbb{R}^{n}. A discrete multivariate random variable is a map

$$
X: S \rightarrow \Omega
$$

together with a function $f_{X}: \Omega \rightarrow \mathbb{R}$ with the properties that
(i) $f_{X}(x) \geqslant 0$ for all $x=\left(x_{1}, \ldots, x_{n}\right) \in \Omega$ and
(ii) $\sum_{x \in \Omega} f_{X}(x)=1$

Continuous: Let S be a sample space. A continuous multivariate random variable is a map

$$
X: S \rightarrow \mathbb{R}^{n}
$$

together with a function $f_{X}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with the properties that
(i) $f_{X}(x) \geqslant 0$ for all $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and
(ii) $\int_{\mathbb{R}^{n}} f_{X}(x) d x=1$

2 Density and Independence

2.1 Marginal Density

$$
\begin{gathered}
f_{X_{k}}\left(x_{k}\right)=\sum_{x_{1}, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{n}} f_{\mathbf{X}}\left(x_{1}, \ldots, x_{n}\right) \\
f_{X_{k}}\left(x_{k}\right)=\int_{\mathbb{R}^{n-1}} f_{X}(x) d x_{1} \ldots d x_{k-1} d x_{k+1} \ldots d x_{n}
\end{gathered}
$$

2.2 Conditional Density

$$
f_{X_{1} \mid x_{2}}\left(x_{1}\right):=\frac{f_{X_{1} X_{2}}\left(x_{1}, x_{2}\right)}{f_{X_{2}}\left(x_{2}\right)} \quad \text { with } f_{X_{2}}\left(x_{2}\right)>0
$$

2.3 Independence

Two continuous random variables are independent if:

$$
f_{X}\left(x_{1}, x_{2}\right)=f_{X_{1}}\left(x_{1}\right) \cdot f_{X_{2}}\left(x_{2}\right)
$$

A full set of n components of a multivariate random variable is independent if:

$$
f_{X}\left(x_{1}, \ldots, x_{n}\right)=f_{X_{1}}\left(x_{1}\right) \ldots \cdot f_{X_{n}}\left(x_{n}\right)
$$

Question: Visualization

X and Y are continuous random variables. X takes on values between 0 and 2 while Y takes on values between 0 and 1 . Their joint PDF is indicated below in the graph.

Figure 1: The exponential distribution

1. Are X and Y independent?
2. Find $f_{X}(x)$ and $f_{Y \mid X}(y \mid 0.5)$.

Answer: Visualization

1. If X and Y to be independent, any observation of X should not give any information on Y. But in the graph, we see X is observed to be equal to 0 , then Y must be 0 . You can also describe it mathematically:

$$
f_{(X, Y)}(0,0) \neq f_{X}(0) \cdot f_{Y}(0)
$$

Since $f_{(X, Y)}(0,0)=\frac{1}{2}, f_{X}(0)=0, f_{Y}(0)=2$.
You can also think in other ways...
2.

$$
\begin{aligned}
& f_{X}(x)= \begin{cases}x / 2, & \text { if } 0 \leq x \leq 1 \\
-3 x / 2+3, & \text { if } 1<x \leq 2 \\
0, & \text { otherwise }\end{cases} \\
& f_{Y \mid X}(y \mid 0.5)= \begin{cases}2, & \text { if } 0 \leq y \leq 1 / 2 \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

3 Expectation

Definition:

$$
\mathrm{E}[X]=\left(\begin{array}{c}
\mathrm{E}\left[X_{1}\right] \\
\vdots \\
\mathrm{E}\left[X_{n}\right]
\end{array}\right)
$$

$$
\begin{gathered}
\mathrm{E}\left[X_{k}\right]=\sum_{x_{k}} x_{k} f_{X_{k}}\left(x_{k}\right)=\sum_{x \in \Omega} x_{k} f_{X}(x) \\
\mathrm{E}\left[X_{k}\right]=\int_{\mathbb{R}} x_{k} f_{X_{k}}\left(x_{k}\right) d x_{k}=\int_{\mathbb{R}^{n}} x_{k} f_{X}(x) d x
\end{gathered}
$$

Property:

For a function $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}$:

$$
\mathrm{E}[\varphi \circ X]=\sum_{x \in \Omega} \varphi(x) f_{X}(x), \quad \text { or } \quad \mathrm{E}[\varphi \circ X]=\int_{\mathbb{R}^{n}} \varphi(x) f_{X}(x) d x
$$

4 Variance and Covariance

4.1 Definition

Covariance

$$
\operatorname{Cov}[X, Y]=E[(X-E[X])(Y-E[Y])]=E[X Y]-E[X] E[Y]
$$

which comes from:

$$
\begin{aligned}
\operatorname{Var}[X+Y] & =\mathrm{E}\left[((X+Y)-\mathrm{E}[X+Y])^{2}\right] \\
& =\mathrm{E}\left[((X-\mathrm{E}[X])+(Y-\mathrm{E}[Y]))^{2}\right] \\
& =\mathrm{E}\left[(X-\mathrm{E}[X])^{2}+(Y-\mathrm{E}[Y])^{2}+2(X-\mathrm{E}[X])(Y-\mathrm{E}[Y])\right] \\
& =\operatorname{Var}[X]+\operatorname{Var}[Y]+2 \mathrm{E}[(X-\mathrm{E}[X])(Y-\mathrm{E}[Y])]
\end{aligned}
$$

Variance

The covariance matrix for a multivariate random variable X is defined as:

$$
\operatorname{Var}[X]=\left(\begin{array}{cccc}
\operatorname{Var}\left[X_{1}\right] & \operatorname{Cov}\left[X_{1}, X_{2}\right] & \ldots & \operatorname{Cov}\left[X_{1}, X_{n}\right] \\
\operatorname{Cov}\left[X_{1}, X_{2}\right] & \operatorname{Var}\left[X_{2}\right] & \ddots & \vdots \\
\vdots & \ddots & \ddots & \operatorname{Cov}\left[X_{n-1}, X_{n}\right] \\
\operatorname{Cov}\left[X_{1}, X_{n}\right] & \ldots & \operatorname{Cov}\left[X_{n-1}, X_{n}\right] & \operatorname{Var}\left[X_{n}\right]
\end{array}\right)
$$

4.2 Property

1. $\operatorname{Cov}[\mathrm{X}, \mathrm{Y}]=\operatorname{Cov}[\mathrm{Y}, \mathrm{X}]$
2. $\operatorname{Cov}[\mathrm{X}, \mathrm{X}]=\operatorname{Var}[\mathrm{X}]$
3. Var $[\mathrm{CX}]=\mathrm{CVar}[\mathrm{X}] C^{T}, \mathrm{C} \in \operatorname{Mat}(\mathrm{n} \times \mathrm{n} ; \mathbb{R})$ is a constant matrix with real coefficients.

5 *Discussion: Covariance-Linearity-Independence

Covariance and Independence:

1. X and Y are independent $\rightarrow \operatorname{Cov}[\mathrm{X}, \mathrm{Y}]=0$.
2. $\operatorname{Cov}[\mathrm{X}, \mathrm{Y}]=0 \nRightarrow \mathrm{X}$ and Y are independent.

Therefore, covariance is not a measure of independence.
Then, what does covariance measure?

Covariance and Linearity:

Covariance measures "linearity". In other words, it shows how much is the relationship between X and Y is like the form "Y $=a+b X$ ".

Let's first have a mathematical taste of the relationship of covariance and linearity. (You do not need to understand exactly clear now.)

We wish to find a best estimation of the linear relationship between variables X and Y , such that the errors between $\mathrm{a}+\mathrm{bX}$ and Y are minimized. Also notice hopefully we wish $b \neq 0$
to satisfy this is a "linear relationship". The method we choose is to find such a pair of (a, b) making $e=E\left[(Y-(a+b X))^{2}\right]$ minimized. Since e is a function of a and b :

$$
e=E\left[(Y-(a+b X))^{2}\right]=E\left(Y^{2}\right)+b^{2} E\left(X^{2}\right)+a^{2}-2 b E(X Y)+2 a b E(X)-2 a E(Y)
$$

To make e minimized, we simply make

$$
\left\{\begin{array}{l}
\frac{\partial e}{\partial a}=2 a+2 b E(X)-2 E(Y)=0 \\
\frac{\partial e}{\partial b}=2 b E\left(X^{2}\right)-2 E(X Y)+2 a E(X)=0
\end{array}\right.
$$

Solve the above equations, we obtain:

$$
\left\{\begin{array}{l}
b=\frac{\operatorname{Cov}[X, Y]}{\operatorname{Var}[X]} \\
a=E(Y)-b E[X]
\end{array}\right.
$$

Now we notice, when $\operatorname{Cov}[\mathrm{X}, \mathrm{Y}]=0, \mathrm{~b}=0$; showing X and Y are unlikely to have a linear relationship.

Just relax, let's see a concrete example.

Question: Covariance, Linearity, and Independence

X is a continuous random variable with:

$$
f_{X}(x)= \begin{cases}\frac{1}{2}, & -1<x<1 \\ 0, & \text { otherwise }\end{cases}
$$

Let $Y=X^{2}$. Then:

1. What is $\operatorname{Cov}[\mathrm{X}, \mathrm{Y}]$?
2. Are X and Y independent?
3. Are X and Y linearly related?

Answer: Covariance, Linearity, and Independence

By definition, $\operatorname{Cov}[X, Y]=E[X Y]-E[X] E[Y]=E\left[X^{3}\right]-E[X] E\left[X^{2}\right]$
And recall, $\mathrm{E}\left[X^{k}\right]:=\int_{-\infty}^{\infty} x^{k} \cdot f_{X}(x)$
Then it's clear $E[X]=E\left[X^{3}\right]=0$. Hence:

1. $\operatorname{Cov}[\mathrm{X}, \mathrm{Y}]=0$
2. X and Y are dependent
3. X and Y are not linearly related

6 Pearson Correlation Coefficient

Definition

$$
\rho_{X Y}=\frac{\operatorname{Cov}[X, Y]}{\sqrt{\operatorname{Var}[X] \operatorname{Var}[Y]}}
$$

This idea comes from "the covariance of the standardized X and Y ". First standardize X and Y to \widetilde{X} and \widetilde{Y}, and Then calculate $\operatorname{Cov}[\widetilde{X}, \widetilde{Y}]$.

$$
\begin{aligned}
\operatorname{Cov}[\tilde{X}, \tilde{Y}] & =\mathrm{E}[\tilde{X} \tilde{Y}]-\mathrm{E}[\tilde{X}] \mathrm{E}[\tilde{Y}] \\
& =\frac{\operatorname{Cov}[X, Y]}{\sqrt{\operatorname{Var}[X] \operatorname{Var}[Y]}}
\end{aligned}
$$

So you can interpret $\rho_{X Y}$ as the covariance of the standardized variables, and it is a measure of linearity.

Property

1. $-1 \leqslant \rho_{X Y} \leqslant 1$
2. $\left|\rho_{X Y}\right|=1$ if and only if there exist numbers $\beta_{0}, \beta_{1} \in \mathbb{R}, \beta_{1} \neq 0$, such that almost surely $Y=\beta_{0}+\beta_{1} X$.
3. Further $\rho_{X Y}=1$ leads to almost surely $\widetilde{X}-\widetilde{Y}=0$, and $\rho_{X Y}=-1$ leads to almost surely $\widetilde{X}+\widetilde{Y}=0$.

6.1 Fisher Transformation

$\operatorname{Var}[\widetilde{X}-\widetilde{Y}]=2-2 \rho_{X Y}$, and $\operatorname{Var}[\widetilde{X}+\widetilde{Y}]=2+2 \rho_{X Y}$. The Fisher transformation is defined as:

$$
\ln \left(\sqrt{\frac{\operatorname{Var}[\widetilde{X}+\widetilde{Y}]}{\operatorname{Var}[\widetilde{X}-\widetilde{Y}]}}\right)=\frac{1}{2} \ln \left(\frac{1+\rho_{X Y}}{1-\rho_{X Y}}\right)=\operatorname{Artanh}\left(\rho_{X Y}\right) \in \mathbb{R}
$$

Then we also have:

$$
\rho_{X Y}=\tanh \left(\ln \left(\frac{\sigma_{\tilde{X}+\tilde{Y}}}{\sigma_{\tilde{X}-\tilde{Y}}}\right)\right)
$$

$6.2 \rho_{X Y}$ and Linearity

1. The closer $\left|\rho_{X Y}\right|$ is to 1 , the more likely X and Y have a linear relationship.
2. Positive correlation: $\rho_{X Y}>0, \operatorname{Var}[\widetilde{X}-\widetilde{Y}]<\operatorname{Var}[\widetilde{X}+\widetilde{Y}] . \mathrm{X}$ and Y tend to be more like $\widetilde{X}=\widetilde{Y}$, in other words, more positively related. When X is larger, then Y is likely to be larger.
3. Negative correlation: $\rho_{X Y}<0, \mathrm{X}$ and Y tend to be more like $\widetilde{X}=-\widetilde{Y}$. When X is larger, then Y is likely to be smaller.

Figure 2: The Pearson Correlation Coefficient

6.3 Bivariate Normal Distribution

X and Y should each follow a normal distribution, but may be not independent. Then the joint density function is:

$$
f_{X Y}(x, y)=\frac{1}{2 \pi \sigma_{X} \sigma_{Y} \sqrt{1-\varrho^{2}}} e^{-\frac{1}{2\left(1-e^{2}\right)}\left[\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)^{2}-2 \varrho\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)\left(\frac{y-\mu_{Y}}{\sigma_{Y}}\right)+\left(\frac{y-\mu_{Y}}{\sigma_{Y}}\right)^{2}\right]}
$$

Property:

1. $-1<\rho<1, \rho=\rho_{X Y}$
2. $\mu_{X}=\mathrm{E}[\mathrm{X}], \delta_{X}^{2}=\operatorname{Var}[X]$. Same for Y .
3. $\rho=0 \Longleftrightarrow \mathrm{X}$ and Y are independent. (Notice this is special.)

7 Hypergeometric Distribution

Interpretation:

A total of N balls, r red and $\mathrm{N}-\mathrm{r}$ black. Draw n balls out without putting back. Assume $\mathrm{r}>$ n and $\mathrm{N}-\mathrm{r}>\mathrm{n}$. The random variable X describes the number of red balls in the n drawn balls.

Comment:

It is a sequence of identical but not independent Bernoulli trials. Each draw is a Bernoulli trial with $p=\frac{r}{N}$.

Features:

1. $\mathrm{N}, \mathrm{r}, \mathrm{n}$ are the parameters
2. $f_{X}(x)=\frac{\binom{r}{x}\binom{N-r}{n-x}}{\binom{N}{n}}$
3. $\mathrm{E}[\mathrm{X}]=n \frac{r}{N}$
4. $\operatorname{Var} X=n \frac{r}{N} \frac{N-r}{N} \frac{N-n}{N-1}$

Approximate Hypergeometric with Binomial:

Recall for a Binomial distribution, $E[X]=n p$, $\operatorname{Var} X=n p q$.
If the sampling fraction $\frac{n}{N}$ is small (less than 0.05), we can use $E[X]=n \frac{r}{N}=p, n \frac{N-r}{N}=q$ to estimate the Hypergeometric distribution with a Binomial distribution.

We can interpret as: when the sample size n is small, it does not affect the left balls much. So, the trials are approximately independent.

Question: Covariance and Hypergeometric

There are totally N balls, r red and $\mathrm{N}-\mathrm{r}$ black. We draw 2 balls out one by one without putting back. And we define three Bernoulli random variables representing the below events:
X_{1} : Red ball at the first draw.
X_{2} : Red ball at the second draw.
X_{3} : Black ball at the second draw.
Then, what is $\operatorname{Cov}\left[X_{1}, X_{2}\right]$, and what is $\operatorname{Cov}\left[X_{1}, X_{3}\right]$?
And, what is $\rho_{X_{1} X_{2}}$, and what is $\rho_{X_{1} X_{3}}$?

Answer: Covariance and Hypergeometric

We have calculated $\operatorname{Cov}\left[X_{1}, X_{2}\right]$ in class.
$\operatorname{Cov}\left[X_{1}, X_{2}\right]=\mathrm{E}\left[X_{1} X_{2}\right]-\mathrm{E}\left[X_{1}\right] \mathrm{E}\left[X_{2}\right]=-\frac{1}{N} \frac{r(N-r)}{N(N-1)}<0$.
Similarly since $X_{1} X_{3}$ is still a Bernoulli trial, hence $\mathrm{E}\left[X_{1} X_{3}\right]=\mathrm{P}\left[X_{1}=1\right.$ and $\left.X_{3}=1\right]=$ $\frac{r}{N} \frac{N-r}{N-1}$.
Then $\operatorname{Cov}\left[X_{1}, X_{3}\right]=\mathrm{E}\left[X_{1} X_{2}\right]-\mathrm{E}\left[X_{1}\right] \mathrm{E}\left[X_{2}\right]=\frac{1}{N} \frac{r(N-r)}{N(N-1)}>0$.
Further with $\operatorname{Var}\left[X_{1}\right]=\operatorname{Var}\left[X_{2}\right]=\frac{r}{N}\left(1-\frac{r}{N}\right)$ and $\operatorname{Var}\left[X_{3}\right]=\frac{N-r}{N}\left(1-\frac{N-r}{N}\right)$. We obtain: $\rho_{X_{1} X_{2}}=-\frac{1}{N-1}<0$, negative correlated.
$\rho_{X_{1} X_{3}}=\frac{1}{N-1}>0$, positive correlated.
This also help you understand the positive and negative $\rho_{X Y}$ better.

1. When $X_{1}=1, X_{2}$ is more likely to be 0 , and X_{3} is more likely to be 1 .
2. When N becomes larger, $\left|\rho_{X_{1} X_{2}}\right|$ and $\left|\rho_{X_{1} X_{3}}\right|$ become smaller. So the effect of X_{1} on X_{2} and X_{3} becomes less. When N is large enough, ρ is close to 0 , and we estimate the two trials as independent.
