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1 Basic Model

Setting and Assumptions:

(i) A dependent variable Y , assume to follow a normal distribution.

(ii) An independent variable X, which we can assume to either be a non-random parameter
or a random variable measured precisely, without any error or uncertainty.

We want to describe Y |x

1.1 Simple Linear Regression Model

We assume that the mean µY |x is given by

µY |x = β0 + β1x for some β0, β1 ∈ R

This is called a simple linear regression model with model parameters β0 and β1.
Another way of writing this model is

Y | x = β0 + β1x+ E

Where E[E] = 0. Our basic goal is to find estimators:

B0 := β̂0 = estimator for β0, b0 = estimate for β0

B1 := β̂1 = estimator for β1, b1 = estimate for β1
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1.2 Least-Squares Estimation 1 BASIC MODEL

1.2 Least-Squares Estimation

Residual:
We have a random sample (x1, Y1),...(xn, Yn). For each measurement yi there exists a

number ei, called the residual, such that:

yi = b0 + b1xi + ei

Error Sum of Squares:

SSE := e21 + e22 + · · ·+ e2n =
n∑

i=1

(yi − (b0 + b1xi))
2

We determine the determine the estimators for β0 and β1 by minimizing SSE. And the
point estimates b0 and b1 based on this method are called least-squares estimates.

1.3 Least-Squares Estimates and Estimators

Point Estimates:

b1 =
n
∑n

i=1 xiyi − (
∑n

i=1 xi) (
∑n

i=1 yi)

n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2 , b0 =
1

n

n∑
i=1

yi − b1 ·
1

n

n∑
i=1

xi

Define:
x̄ =

1

n

n∑
i=1

xi ȳ =
1

n

n∑
i=1

yi

Sxx :=
n∑

i=1

(xi − x̄)2 =
n∑

i=1

x2
i −

1

n

(
n∑

i=1

xi

)2

Syy :=
n∑

i=1

(yi − ȳ)2 =
n∑

i=1

y2i −
1

n

(
n∑

i=1

yi

)2

Sxy :=
n∑

i=1

(xi − x̄) (yi − ȳ) =
n∑

i=1

xiyi −
1

n

(
n∑

i=1

xi

)(
n∑

i=1

yi

)
Then we can write:

b0 = ȳ − b1x̄, b1 =
Sxy

Sxx

2



2 INFERENCES ON β0 AND β1

Estimators:
Similar to the ”maximum likelihood”, replace b0 with β̂0 or B0, replace y with Y , ... You

will get the equations for the estimators B0 and B1

B0 = Ȳ −B1x̄, B1 =
SXY

SXX

Least-Squares Estimation

Find b0 and b1 for the exercise data.

X 1.0 1.0 3.3 3.3 4.0 4.0 4.0 4.0 5.6 5.6 5.6 6.0 6.0 6.5 6.5
Y 1.6 1.8 1.8 1.8 2.7 2.6 2.6 2.2 3.5 2.8 2.1 3.4 3.2 3.4 3.9

2 Inferences on β0 and β1

2.1 Distribution of B0, B1 and S2

Theorem:
Given a random sample of Y | x of size n, the following statistics follow a standard

normal distribution. B0 and B1 are unbiased estimators, which we gain from the least
squares estimation.

B1 − β1

σ/
√∑

(xi − x̄)2
and B0 − β0

σ
√ ∑

x2
i

n
∑

(xi−x̄)2

Theorem:
The variance σ2 of Y | x is assumed to be the same for all values of x.
It turns out that the following estimator is unbiased for σ2 and in fact follows a chi-squared

distribution with n − 2 degrees of freedom.

(n− 2)S2

σ2
=

SSE

σ2

Besides, S2 is independent of B0 and B1. Analogously to the statement that the sample
mean is independent of the sample variance.
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2.2 Interval Estimation for β0 and β1 2 INFERENCES ON β0 AND β1

2.2 Interval Estimation for β0 and β1

Statistic:
Hence the the following statistics follow a T -distribution with n− 2 degrees of freedom.

B1 − β1

S/
√
Sxx

and
B0 − β0

S
√∑

x2
k/
√
nSxx

Confidence Intervals:
Based on the statistics, we have 100(1 − α)% confidence intervals for β1 and β0:

B1 ± tα/2,n−2
S√
Sxx

, B0 ± tα/2,n−2

S
√∑

x2
i√

nSxx

Interval Estimation for β0 and β1

Find the 95% confidence intervals for β0 and β1.

X 1.0 1.0 3.3 3.3 4.0 4.0 4.0 4.0 5.6 5.6 5.6 6.0 6.0 6.5 6.5
Y 1.6 1.8 1.8 1.8 2.7 2.6 2.6 2.2 3.5 2.8 2.1 3.4 3.2 3.4 3.9
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2.3 Tests for β0 and β1 2 INFERENCES ON β0 AND β1

2.3 Tests for β0 and β1

Using the same statistics, we can also perform hypothesis tests on β0 and β1. Such as:

H0 : β0 = β0
0 and H0 : β1 = β0

1

An important special case is Test for Significance of Regression: We say that a regression is
significant if there is statistical evidence that the slope β1 ̸= 0.

2.4 Test for Significance of Regression

Let (xi,Y | xi), i = 1,...,n be a random sample from Y | x.

H0 : β1 = 0

We reject at significance level α if the statistic

Tn−2 =
B1

S/
√
Sxx

satisfies

|Tn−2| > tα/2,n−2
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3 INFERENCES ON µY |X

3 Inferences on µY |x

3.1 Distribution of µ̂Y |x

µ̂Y |x = B0 +B1x = Ȳ −B1x̄+B1x = Ȳ +B1(x− x̄)

So for any chosen x, it follows a normal distribution.
Besides:

V ar[µ̂Y |x] =
σ2

n
+

(x− x̄)2σ2

Sxx

Hence the following statistic follows a standard-normal distribution.

µ̂Y |x − µY |x

σ
√

1
n
+ (x−x̄)2

Sxx

3.2 Confidence Interval for µY |x

Statistic:
So the following statistic follows a T distribution with n− 2 degrees of freedom.

µ̂Y |x − µY |x

S
√

1
n
+ (x−x̄)2

Sxx

Confidence Intervals:
the 100(1 − α)% confidence interval for µY |x:

µ̂Y |x ± tα/2,n−2S

√
1

n
+

(x− x̄)2

Sxx

Confidence Interval for µY |x

1. Find the 95% confidence interval for µY |x based on the exercise data.

2. Find the 95% confidence interval for µY |3.5

X 1.0 1.0 3.3 3.3 4.0 4.0 4.0 4.0 5.6 5.6 5.6 6.0 6.0 6.5 6.5
Y 1.6 1.8 1.8 1.8 2.7 2.6 2.6 2.2 3.5 2.8 2.1 3.4 3.2 3.4 3.9
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4 PREDICTIONS ON Y |X

4 Predictions on Y |x

1. An estimate is a statistical statement on the value of an unknown, but fixed, popu-
lation parameter.

2. A prediction is a statistical statement on the value of an essentially random quan-
tity.

Recall the general idea for we to find a confidence interval for a parameter, we can get the
general idea to find a prediction interval for a random variable...

4.1 Find the Statistic

As a predictor Ŷ |x for the value of Y |x we use the estimator for the mean, i.e., we set

Ŷ | x = µ̂Y |x = B0 +B1x

Analyze µ̂Y |x and Y | x; we know Ŷ | x− Y | x is normally distributed and

E[Ŷ | x− Y | x] = µY |x − µY |x = 0

Var[Ŷ | x− Y | x] =
(
1

n
+

(x− x̄)2

Sxx

)
σ2 + σ2 =

(
1 +

1

n
+

(x− x̄)2

Sxx

)
σ2

Thus, after standardizing and dividing by S/σ we obtain the Tn2 random variable (statis-
tic)

Tn−2 =
Ŷ | x− Y | x

S
√

1 + 1
n
+ (x−x̄)2

Sxx

4.2 The Prediction Interval

100(1 − α)% prediction interval for Y |x:

Ŷ | x± tα/2,n−2S

√
1 +

1

n
+

(x− x̄)2

Sxx

Some comments on confidence intervals and prediction intervals...
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4.2 The Prediction Interval 4 PREDICTIONS ON Y |X

CI and PI in a Poisson Distribution

Let X be the total counts in a sample of size n from a Poisson distribution with mean
k, which is denoted as X ∼ Poisson(nk).
Let Y denote the future total counts that can be observed in a sample of size m from
the same Poisson distribution so that Y ∼ Poisson(mk).
(Can be understood with ”childbirth”.)
Assume n is large enough.

1. Find CI for parameter k.

2. Find (one possible) PI for random variable Y.

(The Nelson’s formula: [[L⌉], ⌊U⌋] with [L,U ] = Ŷ ± zα
2

√
mŶ

(
1
m
+ 1

n

)
)

(Hint: Find a predictor for Ŷ ; Find a known statistic relating Y based on Ŷ ; Get
the PI based on the statistic.)

HW7.2: CI and Critical Region
...
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5 MODEL ANALYSIS

5 Model Analysis

Previously we assume our SLR model is right, then find the model parameters and get
some inferences on:

1. Model parameters β0, β1;
2. Random variable Y | x.
Next we want to know if our linear model is appropriate.

5.1 Crucial Quantities

Total Sum of Squares:

SST = Syy =
n∑

i=1

(
Yi − Ȳ

)2
Error Sum of Squares:

SSE =
n∑

i=1

(Yi − (b0 + b1x))
2

SSE = Syy −B1Sxy = Syy −
S2
xy

Sxx

Coefficient of Determination:

R2 =
SST − SSE

SST

=
S2
xy

SxxSyy

1. R2 expresses the proportion of the total variation in Y that is explained by the linear
model.
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5.2 Test for Significance of regression 5 MODEL ANALYSIS

2. R2 is exactly the square of the estimator(22.1) for the the correlation coefficient ρXY .
Usage1: So we can use R to Test for Correlation Coefficient.

3. Tn−2 =
B1√
S2/Sxx

= Sxy/Sxx√
SSE/[(n−2)Sxx]

= R√
1−R2

√
n− 2.

The left is the statistic have used in the Test for Significance of regression.
Usage2: So we can use R to Test for Significance of regression.

5.2 Test for Significance of regression

Let (X , Y) follow a bivariate normal distribution with correlation coefficient ρ ∈ (−1,
1). Let R be the estimator(22.1) for ρ. Then

H0 : ρ = 0

is rejected at significance level α if∣∣∣∣R√
n− 2√

1−R2

∣∣∣∣ > tα/2,n−2

Discuss on R2

1. R2 is large: good model because...

2. R2 is small: means SSE is small.
Caused by two possible problems–
A: due to σ2 is very large–pure error–not model bad
B: due to–lack-of-fit error–model bad

When R2 is small, we test what problem it is by taking repeated measurements.
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5.3 Test for Lack of Fit 5 MODEL ANALYSIS

5.3 Test for Lack of Fit

Pure Error:

SSE;pe :=
k∑

i=1

ni∑
j=1

(
Yij − Ȳi

)2
=

k∑
i=1

ni∑
j=1

Y 2
ij −

k∑
i=1

1

ni

(
ni∑
j=1

Yij

)2

Lack of Fit Error:
SSE,If := SSE − SSE;pe

Test for Lack of Fit:
Let x1,...,xk be regressors and Yi1,Yi2,...,Yini

, i = 1, ... , k , the measured responses at
each of the regressors. Let SSE;pe and SSE;lf be the pure error and lack-of-fit sums of squares
for a linear regression model. Then

H0 : the linear regression model is appropriate
is rejected at significance level α if the test statistic (why?)

Fk−2,n−k =
SSE;f/(k − 2)

SSE;pe/(n− k)

satisfies Fk−2,n−k > fα,k−2,n−k.
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5.4 Residual Analysis 5 MODEL ANALYSIS

5.4 Residual Analysis

ei = Yi − Ŷi

1. Consistent with Y is of a normal distribution?

2. Consistent with Y has equal variance σ2 for all x?

3. Does the linear model seem appropriate?

5.5 Plot the Data

Summary

Draw a graph to summary the important points you learn in SLR.

*A total Demo.
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