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1 Basic Model

Setting and Assumptions:
(i) A dependent variable Y , assume to follow a normal distribution.

(ii) An independent variable X, which we can assume to either be a non-random parameter
or a random variable measured precisely, without any error or uncertainty.

We want to describe Y|z

1.1 Simple Linear Regression Model

We assume that the mean jy, is given by

tylz = Bo+ Bix  for some By, f1 € R

This is called a simple linear regression model with model parameters 3y and f;.
Another way of writing this model is

Y|rx=p+bMz+FE
Where E[E] = 0. Our basic goal is to find estimators:

By = Bo = estimator for 5y, by = estimate for S
By := 1 = estimator for 3, b; = estimate for 3,
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1.2 Least-Squares Estimation

Residual:
We have a random sample (z1, Y1),...(x,, Y,). For each measurement y; there exists a
number e;, called the residual, such that:

Yi = bo + bz + ¢

Error Sum of Squares:

n

SSE - 6%"‘6%_'—+ei:Z(y7f—(b0+blx1))2
=1

We determine the determine the estimators for fy and f; by minimizing SSg. And the
point estimates by and b; based on this method are called least-squares estimates.

1.3 Least-Squares Estimates and Estimators

Point Estimates:

n 7-1 T;Y; — 7‘7; xT; ﬂf i 1 - 1
bl _ szl Y (szl ) (szl Y )7 bO — E Z Yi — bl .
i=1

n 2 n 2 - X
nZizl T; — (Zi:l ;) N4
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2 INFERENCES ON B, AND $,

Estimators: R o
Similar to the "maximum likelihood”, replace by with 5y or By, replace y with Y, ... You
will get the equations for the estimators By and B

_ S
By =Y — Bz, Blzsx—y
XX

Find by and b; for the exercise data.

X|10 1.0 33 33 40 40 40 40 56 56 56 6.0 6.0 6.5 6.5
Y|16 18 18 18 27 26 26 22 35 28 21 34 32 34 39

2 Inferences on 3; and [

2.1 Distribution of Bj, B; and 5?

Theorem:

Given a random sample of Y | x of size n, the following statistics follow a standard
normal distribution. By and B; are unbiased estimators, which we gain from the least
squares estimation.

By — b
me T e
—\2 Ty

Theorem:

The variance o2 of Y | x is assumed to be the same for all values of x.

It turns out that the following estimator is unbiased for o2 and in fact follows a chi-squared
distribution with n — 2 degrees of freedom.

(n—2)S*> SSg

Besides, S? is independent of By and B;. Analogously to the statement that the sample
mean is independent of the sample variance.
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2.2 Interval Estimation for 3, and 5,

Statistic:
Hence the the following statistics follow a T -distribution with n — 2 degrees of freedom.
Bi—p By — fo
S/ Sza SV w2 /\/nSe.

Confidence Intervals:
Based on the statistics, we have 100(1 — «)% confidence intervals for 5 and So:

S S/ a?
1 a/2n—2" 5> 0 af2n—2" —5—
By £+t " By £t o

Find the 95% confidence intervals for 8, and 3;.

X[10 1.0 33 33 40 40 40 40 56 56 56 6.0 6.0 65 6.5
Y| |16 18 18 18 27 26 26 22 35 28 21 34 32 34 39
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2.3 Tests for [, and 3

Using the same statistics, we can also perform hypothesis tests on 5y and ;. Such as:
Ho:fo= Py and Hy:fp =/

An important special case is Test for Significance of Regression: We say that a regression is
significant if there is statistical evidence that the slope 3; # 0.

2.4 Test for Significance of Regression

Let (z;,Y | z;), i = 1,...,n be a random sample from Y | x.
H[) . 51 =0
We reject at significance level « if the statistic

By
S/ Szx

T, o=
satisfies

’Tn72 ’ > ta/Q,an




3 INFERENCES ON py|x

3 Inferences on uy,

3.1 Distribution of iy,

ﬁ'Y|x:Bo+Bll':Y—Blf+Bl,CE:}7+Bl(x_j)

So for any chosen x, it follows a normal distribution.
Besides:

o? (v —17)%?

Var|iy] = —
ar[fy|.] <
Hence the following statistic follows a standard-normal distribution.

ZZY|I - MYz

3.2 Confidence Interval for iy,

Statistic:
So the following statistic follows a T distribution with n — 2 degrees of freedom.

//ZY|ac — KUy |z
1 (z—x)2
Confidence Intervals:

the 100(1 — a)% confidence interval for piy,:

~ 1 (z—7)
T + ta n— Syl — o
Hy| /2.n—2 - + S

1. Find the 95% confidence interval for iy, based on the exercise data.

2. Find the 95% confidence interval for piy35

X[10 1.0 33 33 40 40 40 40 56 56 56 6.0 6.0 65 6.5
Y| |16 18 18 18 27 26 26 22 35 28 21 34 32 34 39
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4 Predictions on Y|z

1. An estimate is a statistical statement on the value of an unknown, but fixed, popu-
lation parameter.

2. A prediction is a statistical statement on the value of an essentially random quan-
tity.

Recall the general idea for we to find a confidence interval for a parameter, we can get the
general idea to find a prediction interval for a random variable...

4.1 Find the Statistic

As a predictor Y|z for the value of Y |x we use the estimator for the mean, i.e., we set

—

Y|$://Iy‘x:BQ+Bll’
Analyze [iy|, and Y | 2; we know m —Y | z is normally distributed and

EY |z —Y | 2] = pyp — pyja =0

— 1 _=\2 1 B 9
Vel T =Y )= (4 g ) oot = (14 O ) o

Thus, after standardizing and dividing by S/o we obtain the T},» random variable (statis-
tic)

Y z-Y
Tn—2: |:E |x72
Sy/1+ 1+

4.2 The Prediction Interval

100(1 — )% prediction interval for Y|z:

— 1 — 7)2
n SJ:J:

Some comments on confidence intervals and prediction intervals...



4.2 The Prediction Interval 4 PREDICTIONS ON Y |X

Y| x
A
— Regression Line
— Confidence Band
—— Predictioon Band

CI and PI in a Poisson Distribution

o

| \

Let X be the total counts in a sample of size n from a Poisson distribution with mean
k, which is denoted as X ~ Poisson(nk).

Let Y denote the future total counts that can be observed in a sample of size m from
the same Poisson distribution so that Y ~ Poisson(mk).

(Can be understood with ”childbirth”.)

Assume n is large enough.

1. Find CI for parameter k.
2. Find (one possible) PI for random variable Y.
(The Nelson’s formula: [[L1], [U]]  with [L,U] =Y & zay/mY (L+1))

(Hint: Find a predictor for lA/; Find a known statistic relating Y based on 17; Get
the PI based on the statistic.)

HW7.2: CI and Critical Region




5 MODEL ANALYSIS

5 Model Analysis

Previously we assume our SLR model is right, then find the model parameters and get
some inferences on:

1. Model parameters Sy, (i;

2. Random variable Y | .

Next we want to know if our linear model is appropriate.

5.1 Crucial Quantities

Total Sum of Squares:

SST:S@/@/:X:O/;_Y)2

i=1

Error Sum of Squares:

SSk =Y (Vi — (by + bz))’

i=1

S2
SSg = Syy — B1Syy = Syy — S—:Cy
Y| x Y| x
u i
l T
_________________________________ [)/l/l ’ )/ -
Coefficient of Determination:
R SSr — SSg _ Siy
SSr SzaSyy

1. R? expresses the proportion of the total variation in Y that is explained by the linear
model.
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2. R? is exactly the square of the estimator(22.1) for the the correlation coefficient pyy-.

Usagel: So we can use R to Test for Correlation Coefficient.

Szy/Swa R m

B1 _ _
V/S2/See  \/SSE/l(n—2)Sea]  V1-R?

The left is the statistic have used in the Test for Significance of regression.

3. Tho =

Usage2: So we can use R to Test for Significance of regression.

5.2 Test for Significance of regression

Let (X, Y) follow a bivariate normal distribution with correlation coefficient p € (—1,
1). Let R be the estimator(22.1) for p. Then

HO P = 0
is rejected at significance level « if

Ryv/m —2
V1-— R?

> ta/2,n—2

Discuss on R?

1. R? is large: good model because...

2. R? is small: means SSg is small.

Caused by two possible problems—

A: due to 0? is very large-pure error-not model bad

B: due to-lack-of-fit error-model bad

When R? is small, we test what problem it is by taking repeated measurements.

10
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5.3 Test for Lack of Fit

24}
22}
20/ .

Yield [%]

16 : :
14} )
12f
10;1 PR S S S S S S S RS S S S S S|

Temperature [°C]

Pure Error:

SSppe = Eka i i ; (Z Yij) |

Lack of Fit Error:
SSE,If = SSE — SSE;pe

Test for Lack of Fit:

Let zq,...,x; be regressors and Y;1,Yia,....Yin,, 1 = 1, ... , k , the measured responses at
each of the regressors. Let SSg;p. and SSg;ir be the pure error and lack-of-fit sums of squares
for a linear regression model. Then

Hy : the linear regression model is appropriate

is rejected at significance level «v if the test statistic (why?)

I _ SSmy/(k—=2)
e SSEpe/(n — k)

satisfies Fy_on—t > fak—2n—k-

11
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5.4 Residual Analysis

~

e =YY
1. Consistent with Y is of a normal distribution?
2. Consistent with Y has equal variance o2 for all x?

3. Does the linear model seem appropriate?

5.5 Plot the Data

A

2 4 6 8 10 12 14 16 18 2 4 6 8 10 12 14 16 18

Y
12
10+
8 $
b (]
4
2_
2 4 6 8 10 12 14 16 18 2 4 6 8 10 12 14 16 18

::
Draw a graph to summary the important points you learn in SLR.

*A total Demo.
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