VE401 RECITATION CLASS NOTE10 Comparison Test

Chen Siyi siyi.chen_chicy@sjtu.edu.cn

1 Comparison of Two Proportions

For large sample size:

$$\overline{X}^{(1)} \sim N\left(p_1, \frac{p_1(1-p_1)}{n_1}\right), \quad \overline{X}^{(2)} \sim N\left(p_2, \frac{p_2(1-p_2)}{n_2}\right)$$

So for large sample size:

$$\widehat{p_1 - p_2} = \widehat{p}_1 - \widehat{p}_2 \sim N\left(p_1 - p_2, \frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}\right)$$

Similarly we deduce the following $100(1 - \alpha)\%$ confidence interval for $p_1 - p_2$:

$$\widehat{p}_1 - \widehat{p}_2 \pm z_{\alpha/2} \sqrt{\frac{\widehat{p}_1 (1 - \widehat{p}_1)}{n_1} + \frac{\widehat{p}_2 (1 - \widehat{p}_2)}{n_2}}$$

1.1 Large-sample Test for Differences in Proportions

Suppose two random samples of (large) sizes n_1 and n_2 from two Bernoulli distributions with parameters p_1 and p_2 are given. Denote by \hat{p}_1 and \hat{p}_2 the means of the two samples. Let $(\hat{p}_1 - \hat{p}_2)_0$ be a null value for the difference $p_1 - p_2$. Then the test based on the statistic

$$Z = \frac{\widehat{p}_1 - \widehat{p}_2 - (p_1 - p_2)_0}{\sqrt{\frac{\widehat{p}_1(1 - \widehat{p}_1)}{n_1} + \frac{\widehat{p}_2(1 - \widehat{p}_2)}{n_2}}}$$

is called a large-sample test for differences in proportions. We reject at significance level α :

- (i) $H_0: p_1 p_2 = (p_1 p_2)_0$ if $|Z| > z_{\alpha/2}$
- (ii) $H_0: p_1 p_2 \le (p_1 p_2)_0$ if $Z > z_{\alpha}$
- (iii) $H_0: p_1 p_2 \ge (p_1 p_2)_0$ if $Z < -z_{\alpha}$

1.2 Pooled Test for Equality of Proportions

Suppose two random samples of (large) sizes n_1 and n_2 from two Bernoulli distributions with parameters p_1 and p_2 are given. Denote by \hat{p}_1 and \hat{p}_2 the means of the two samples. Let \hat{p} be the pooled estimator for the proportion, which is defined as

$$\widehat{p} := \frac{n_1 \widehat{p}_1 + n_2 \widehat{p}_2}{n_1 + n_2}$$

Then the test based on the statistic

$$Z = \frac{\widehat{p}_1 - \widehat{p}_2}{\sqrt{\widehat{p}(1 - \widehat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

is called a pooled large-sample test for equality of proportions. We reject at significance level α :

(i)
$$H_0: p_1 = p_2$$
 if $|Z| > z_{\alpha/2}$

- (ii) $H_0: p_1 \leq p_2$ if $Z > z_{\alpha}$
- (iii) $H_0: p_1 \ge p_2$ if $Z < -z_{\alpha}$

2 Comparison of Two Variances

2.1 The F-Distribution

Definition:

Let $X_{\gamma_1}^2$ and $X_{\gamma_2}^2$ be independent chi-squared random variables with γ_1 and γ_2 degrees of freedom, respectively.

The random variable

$$F_{\gamma_1,\gamma_2} = \frac{X_{\gamma_1}^2/\gamma_1}{X_{\gamma_2}^2/\gamma_2}$$

is said to follow an F-distribution with γ_1 and γ_2 degrees of freedom.

2.2 The F-Test

Statistic:

Two Normally-Distributed Populations:

$$X^{(1)} \sim N(\mu_1, \sigma_1^2)$$

 $X^{(2)} \sim N(\mu_2, \sigma_2^2)$

Taking samples of sizes n_1 and n_2 from the populations, we know that

$$\frac{(n_1-1)S_1^2}{\sigma_1^2} \sim \chi_{n_1-1}^2, \quad \frac{(n_2-1)S_2^2}{\sigma_2^2} \sim \chi_{n_2-1}^2$$

If $\sigma_1^2 = \sigma_2^2$, the statistic

$$S_1^2/S_2^2$$

follows an F -distribution with $n_1 - 1$ and $n_2 - 1$ degrees of freedom.

F-test:

Let S_1^2 and S_2^2 be sample variances based on independent random samples of sizes n_1 and n_2 drawn from normal populations with means 1 and 2 and variances σ_1^2 and σ_2^2 , respectively. Then a test based on the statistic

$$F_{n_1-1,n_2-1} = \frac{S_1^2}{S_2^2}$$

is called an F-test.

We reject at significance level α :

(i) $H_0: \sigma_1 \le \sigma_2$ if $\frac{S_1^2}{S_2^2} > f_{\alpha, n_1 - 1, n_2 - 1}$

(ii)
$$H_0: \sigma_1 \ge \sigma_2$$
 if $\frac{S_2}{S_1^2} > f_{\alpha, n_2 - 1, n_1 - 1}$

(iii) $H_0: \sigma_1 = \sigma_2$ if $\frac{S_1^2}{S_2^2} > f_{\alpha/2, n_1 - 1, n_2 - 1}$ or $\frac{S_2^2}{S_1^2} > f_{\alpha/2, n_2 - 1, n_1 - 1}$

Abscissa of OC Curves (when $n_1 = n_2$):

$$\lambda = \frac{\sigma_1}{\sigma_2}$$

Comments:

- 1. The populations must be normally distributed.
- 2. If possible, the sample sizes n_1 and n_2 should be equal.
- 3. The F-test is not very powerful, β can be quite large.
- 4. We hope to not reject H_0

3 Comparison of Two Means

Overviev

When comparing two means, what affect your choice of methods? Draw a map.

All four methods assume normality.

$$\overline{X}^{(1)} \sim N\left(\mu_1, \sigma_1^2/n_1\right), \quad \overline{X}^{(2)} \sim N\left(\mu_2, \sigma_2^2/n_2\right)$$

3.1 Variances Known

Statistic:

 $\overline{X_1} - \overline{X_2}$ is normal with mean $\mu_1 - \mu_2$ and variance $\sigma_1^2/n_1 + \sigma_2^2/n_2$ So we can use the statistic to do Z-test:

$$Z = \frac{\overline{X}^{(1)} - \overline{X}^{(2)} - (\mu_1 - \mu_2)}{\sqrt{\sigma_1^2 / n_1 + \sigma_2^2 / n_2}}$$

Confidence Interval:

 $100(1 - \alpha)\%$ two sided confidence interval for $\mu_1 - \mu_2$

$$\mu_1 - \mu_2 = \overline{X}^{(1)} - \overline{X}^{(2)} \pm z_{\alpha/2} \sqrt{\sigma_1^2 / n_1 + \sigma_2^2 / n_2}$$

.

Reject H_0 :

We reject at significance level α :

(i)
$$H_0: \mu_1 - \mu_2 = (\mu_1 - \mu_2)_0$$
 if $\left| \frac{\overline{X}_1 - \overline{X}_2 - (\mu_1 - \mu_2)_0}{\sqrt{\sigma_1^2 / n_1 + \sigma_2^2 / n_2}} \right| > z_{\alpha/2}$

.

(ii)
$$H_0: \mu_1 - \mu_2 \le (\mu_1 - \mu_2)_0$$
 if $\frac{\overline{X}_1 - \overline{X}_2 - (\mu_1 - \mu_2)_0}{\sqrt{\sigma_1^2 / n_1 + \sigma_2^2 / n_2}} > z_\alpha$

(iii)
$$H_0: \mu_1 - \mu_2 \ge (\mu_1 - \mu_2)_0$$
 if $\frac{\overline{X}_1 - \overline{X}_2 - (\mu_1 - \mu_2)_0}{\sqrt{\sigma_1^2 / n_1 + \sigma_2^2 / n_2}} < -z_{\alpha}$

Abscissa of OC Curves (when $n = n_1 = n_2$):

$$d = \frac{|\mu_1 - \mu_2|}{\sqrt{\sigma_1^2 + \sigma_2^2}}$$

For $n_1 \neq n_2$:

The table is used with the equivalent sample size

$$n = \frac{\sigma_1^2 + \sigma_2^2}{\sigma_1^2/n_1 + \sigma_2^2/n_2}$$

3.2 Equal but Unknown Variances

Statistic:

$$Z = \frac{\left(\overline{X}_{1} - \overline{X}_{2}\right) - (\mu_{1} - \mu_{2})}{\sqrt{\sigma^{2}\left(1/n_{1} + 1/n_{2}\right)}}$$

Define the pooled estimator for the variance:

$$S_p^2 = \frac{(n_1 - 1) S_1^2 + (n_2 - 1) S_2^2}{n_1 + n_2 - 2}$$

Then the statistic:

$$T_{n_1+n_2-2} = \frac{\left(\overline{X}_1 - \overline{X}_2\right) - (\mu_1 - \mu_2)}{\sqrt{S_p^2 \left(1/n_1 + 1/n_2\right)}}$$

Confidence Interval:

 $100(1 - \alpha)\%$ two sided confidence interval for $\mu_1 - \mu_2$

$$\left(\overline{X}_1 - \overline{X}_2\right) \pm t_{\alpha/2, n_1+n_2-2} \sqrt{S_p^2 \left(1/n_1 + 1/n_2\right)}$$

Reject H_0 :

We reject at significance level α :

- (i) $H_0: \mu_1 \mu_2 = (\mu_1 \mu_2)_0$ if $|T_{n_1+n_2-2}| > t_{\alpha/2,n_1+n_2-2}$
- (ii) $H_0: \mu_1 \mu_2 \le (\mu_1 \mu_2)_0$ if $T_{n_1+n_2-2} > t_{\alpha,n_1+n_2-2}$
- (iii) $H_0: \mu_1 \mu_2 \ge (\mu_1 \mu_2)_0$ if $T_{n_1+n_2-2} < -t_{\alpha,n_1+n_2-2}$

Abscissa of OC Curves (when $n = n_1 = n_2$):

$$d = \frac{|\mu_1 - \mu_2|}{2\sigma}$$

Remember when reading the OC curve, use a modified $n^* = 2n - 1$.

As before, when σ is unknown, we must either use an estimate or express the deviation in terms of σ .

3.3 (Inequal) and Unknown Variances

The Welch-Satterthwaite Approximation:

Let $X^{(1)}, \ldots, X^{(1)}$ be k independent normally distributed random variables with variances $\sigma_1^2, \ldots, \sigma_k^2$.

Let s_1^2, \ldots, s_k^2 be sample variances based on samples of sizes n_1, \ldots, n_k from the k populations, respectively. Let $\lambda_1, \ldots, \lambda_k > 0$ be positive real numbers and define

$$\gamma := \frac{\left(\lambda_1 s_1^2 + \dots + \lambda_k s_k^2\right)^2}{\sum_{i=1}^k \frac{\left(\lambda_i s_i^2\right)^2}{n_i - 1}}$$

Then the following is approximately a chi-squared distribution with γ degrees of freedom:

$$\gamma \cdot \frac{\lambda_1 s_1^2 + \lambda_2 s_2^2 + \dots + \lambda_k s_k^2}{\lambda_1 \sigma_1^2 + \lambda_2 \sigma_2^2 + \dots + \lambda_k \sigma_k^2}$$

For the case $\mathbf{k} = \mathbf{2}$, $\lambda_1 = \mathbf{1}/n_1$ and $\lambda_2 = n_1$

$$\gamma = \frac{\left(S_1^2/n_1 + S_2^2/n_2\right)^2}{\left(\frac{S_1^2/n_1\right)^2}{n_1 - 1} + \frac{\left(S_2^2/n_2\right)^2}{n_2 - 1}}$$

The following is approximately a chi-squared distribution with γ degrees of freedom:

$$\gamma \cdot \frac{S_1^2/n_1 + S_2^2/n_2}{\sigma_1^2/n_1 + \sigma_2^2/n_2}$$

And the statistic below follows a T-distribution with γ degrees of freedom.

$$T_{\gamma} = \frac{\left(\overline{X}_1 - \overline{X}_2\right) - (\mu_1 - \mu_2)_0}{\sqrt{S_1^2/n_1 + S_2^2/n_2}}$$

Welch's (pooled) T-test for Equality of Means

$$T_{\gamma} = \frac{\left(\overline{X}_{1} - \overline{X}_{2}\right) - \left(\mu_{1} - \mu_{2}\right)_{0}}{\sqrt{S_{1}^{2}/n_{1} + S_{2}^{2}/n_{2}}}$$

We reject at significance level α :

- (i) $H_0: \mu_1 \mu_2 = (\mu_1 \mu_2)_0$ if $|T_{\gamma}| > t_{\alpha/2,\gamma}$
- (ii) $H_0: \mu_1 \mu_2 \le (\mu_1 \mu_2)_0$ if $T_{\gamma} > t_{\alpha,\gamma}$
- (iii) $H_0: \mu_1 \mu_2 \ge (\mu_1 \mu_2)_0$ if $T_{\gamma} < -t_{\alpha,\gamma}$

Comments

- 1. In practice, we round γ down to the nearest integer.
- 2. Power calculations are much more difficult. There are no simple OC curves for Welch's test.
- 3. As remarked earlier, it is not a good idea to pre-test for equal variances and then make a decision whether to use Student's or Welch's test. In fact, current recommendations are to always use Welch's test.

3.4 Paired T-Test

Statistic

Assume that X and Y follow a joint bivariate normal distribution. Then D = X - Y follows a normal distribution. Then:

$$T_{n-1} = \frac{\overline{D} - \mu_D}{\sqrt{S_D^2/n}}$$

Reject H_0

We reject at significance level α :

- (i) $H_0: \mu_D = (\mu_D)_0$ if $|T_{n-1}| > t_{\alpha/2, n-1}$
- (ii) $H_0: \mu_D \le (\mu_D)_0$ if $T_{n-1} > t_{\alpha,n-1}$
- (iii) $H_0: \mu_D \ge (\mu_D)_0$ if $T_{n-1} < -t_{\alpha,n-1}$

3.5 Paired vs. Pooled T-Tests

Positive relation makes a paired T-test more powerful.

- 1. $\rho_{XY} > 0$: Paired T-Test is more powerful
- 2. $\rho_{XY} \leq 0$: Pooled T-Test is more powerful

Test Correlation Coefficient 4

Estimator:

The natural unbiased estimators:

$$\widehat{\operatorname{Var}[X]} = \frac{1}{n-1} \sum_{i=1}^{n} \left(X_i - \overline{X} \right)^2$$
$$\operatorname{Cov}[X, Y] = \frac{1}{n-1} \sum_{i=1}^{n} \left(X_i - \overline{X} \right) \left(Y_i - \overline{Y} \right)$$

The natural choice for an estimator for the correlation coefficient is then:

$$R := \hat{\rho} = \frac{\sum \left(X_i - \overline{X}\right) \left(Y_i - \overline{Y}\right)}{\sqrt{\sum \left(X_i - \overline{X}\right)^2} \sqrt{\sum \left(Y_i - \overline{Y}\right)^2}}$$

Statistic:

When (X, Y) follows a bivariate normal distribution, and we set large sample size n, then the Fisher transformation of R

$$\frac{1}{2}\ln\left(\frac{1+R}{1-R}\right) = \operatorname{Artanh}(R)$$

is approximately normally distributed with

$$\mu = \frac{1}{2} \ln \left(\frac{1+\varrho}{1-\varrho} \right) = \operatorname{Artanh}(\varrho), \quad \sigma^2 = \frac{1}{n-3}$$

Therefore we have the statistic:

$$Z = \frac{\sqrt{n-3}}{2} \left(\ln \left(\frac{1+R}{1-R} \right) - \ln \left(\frac{1+\varrho_0}{1-\varrho_0} \right) \right)$$
$$= \sqrt{n-3} \left(\operatorname{Artanh}(R) - \operatorname{Artanh}(\varrho_0) \right)$$

100(1 -
$$\alpha$$
)% Confidence Interval for ρ :

$$\left[\frac{1+R-(1-R)e^{2z_{\alpha/2}/\sqrt{n-3}}}{1+R+(1-R)e^{2z_{\alpha/2}/\sqrt{n-3}}}, \frac{1+R-(1-R)e^{-2z_{\alpha/2}/\sqrt{n-3}}}{1+R+(1-R)e^{-2z_{\alpha/2}/\sqrt{n-3}}}\right]$$
tanh $\left(\operatorname{Artanh}(R) \pm \frac{z_{\alpha/2}}{\sqrt{n-3}}\right)$
Reject H_0 :

 $H_0: \ \rho = \rho_0 \text{ if } |\sqrt{n-3} \left(\operatorname{Artanh}(R) - \operatorname{Artanh}(\varrho_0) \right)| > z_{\alpha/2} \text{ or } \rho_0 \text{ is not in the confidence}$ interval

5 Non-Parametric Comparisons of Locations

5.1 The Wilcoxon Rank-Sum Test

Statistic

Let X and Y be two random samples following some continuous distributions.

Let $X_1,...,X_m$ and $Y_1,...,Y_n$, $m \leq n$, be random samples from X and Y and associate the rank R_i , i = 1,...,m+n, to the R_i^{th} smallest among the m + n total observations. If ties in the rank occur, the mean of the ranks is assigned to all equal values.

Then the test based on the statistic

 $W_m :=$ sum of the ranks of X_1, \ldots, X_m

is called the Wilcoxon rank-sum test.

Reject H_0 for small m,n

We reject H_0 : P [X > Y] = 1/2 (and similarly the analogous one-sided hypotheses) at significance level α if W_m falls into the corresponding critical region.

Reject H_0 for large m,n

 W_m is approximately normally distributed with

$$E[W_m] = \frac{m(m+n+1)}{2}, \quad Var[W_m] = \frac{mn(m+n+1)}{12}$$

If there are many ties, the variance may be corrected by taking

Var
$$[W_m] = \frac{mn(m+n+1)}{12 - \sum_{\text{groups}} \frac{t^3 + t}{12}}$$

Then

$$Z = \frac{W_m - E\left[W_m\right]}{\sqrt{\operatorname{Var}\left[W_m\right]}}$$

We reject at significance level α :

- (i) $H_0: P[X_m > X_n] = 0.5$ if $|Z| > z_{\alpha/2}$
- (ii) $H_0: P[X_m > X_n] \le 0.5$ if $Z > z_{\alpha}$
- (iii) $H_0: P[X_m > X_n] \ge 0.5 \text{ if } Z < -z_{\alpha}$

5.2 Non-Parametric Paired Test

Assumption

Let X and Y be two independent random variables that follow the same distribution but differ only in their location, i.e., $X' := X - \delta$ and Y are independent and identically distributed.

Then δ is the median of D = X - Y, and D will be symmetric about δ . Notice, X and Y themselves do not need to be symmetric.

Method

Transformed to the Wilcoxon signed-rank test for median, for the random variable D. Let's write out the transformation:

1. $H_0: M_D = (M_D)_0 \longleftarrow$

2.
$$H_0: M_D \leq (M_D)_0 \leftarrow$$

3. $H_0: M_D \ge (M_D)_0 \longleftarrow$