VE401 Recitation Class Note10
 Comparison Test

Chen Siyi
siyi.chen_chicy@sjtu.edu.cn

1 Comparison of Two Proportions

For large sample size:

$$
\bar{X}^{(1)} \sim N\left(p_{1}, \frac{p_{1}\left(1-p_{1}\right)}{n_{1}}\right), \quad \bar{X}^{(2)} \sim N\left(p_{2}, \frac{p_{2}\left(1-p_{2}\right)}{n_{2}}\right)
$$

So for large sample size:

$$
\widehat{p_{1}-p_{2}}=\widehat{p}_{1}-\widehat{p}_{2} \sim N\left(p_{1}-p_{2}, \frac{p_{1}\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{2}}\right)
$$

Similarly we deduce the following $100(1-\alpha) \%$ confidence interval for $p_{1}-p_{2}$:

$$
\widehat{p}_{1}-\widehat{p}_{2} \pm z_{\alpha / 2} \sqrt{\frac{\widehat{p}_{1}\left(1-\widehat{p}_{1}\right)}{n_{1}}+\frac{\widehat{p}_{2}\left(1-\widehat{p}_{2}\right)}{n_{2}}}
$$

1.1 Large-sample Test for Differences in Proportions

Suppose two random samples of (large) sizes n_{1} and n_{2} from two Bernoulli distributions with parameters p_{1} and p_{2} are given. Denote by \widehat{p}_{1} and \widehat{p}_{2} the means of the two samples.

Let $\left(\widehat{p}_{1}-\widehat{p}_{2}\right)_{0}$ be a null value for the difference $p_{1}-p_{2}$. Then the test based on the statistic

$$
Z=\frac{\widehat{p}_{1}-\widehat{p}_{2}-\left(p_{1}-p_{2}\right)_{0}}{\sqrt{\frac{\widehat{p}_{1}\left(1-\widehat{p}_{1}\right)}{n_{1}}+\frac{\widehat{p}_{2}\left(1-\widehat{p}_{2}\right)}{n_{2}}}}
$$

is called a large-sample test for differences in proportions.
We reject at significance level α :
(i) $H_{0}: p_{1}-p_{2}=\left(p_{1}-p_{2}\right)_{0}$ if $|Z|>z_{\alpha / 2}$
(ii) $H_{0}: p_{1}-p_{2} \leq\left(p_{1}-p_{2}\right)_{0}$ if $Z>z_{\alpha}$
(iii) $H_{0}: p_{1}-p_{2} \geq\left(p_{1}-p_{2}\right)_{0}$ if $Z<-z_{\alpha}$

1.2 Pooled Test for Equality of Proportions

Suppose two random samples of (large) sizes n_{1} and n_{2} from two Bernoulli distributions with parameters p_{1} and p_{2} are given. Denote by \widehat{p}_{1} and \widehat{p}_{2} the means of the two samples.

Let \widehat{p} be the pooled estimator for the proportion, which is defined as

$$
\widehat{p}:=\frac{n_{1} \widehat{p}_{1}+n_{2} \widehat{p}_{2}}{n_{1}+n_{2}}
$$

Then the test based on the statistic

$$
Z=\frac{\widehat{p}_{1}-\widehat{p}_{2}}{\sqrt{\widehat{p}(1-\widehat{p})\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}
$$

is called a pooled large-sample test for equality of proportions.
We reject at significance level α :
(i) $H_{0}: p_{1}=p_{2}$ if $|Z|>z_{\alpha / 2}$
(ii) $H_{0}: p_{1} \leq p_{2}$ if $Z>z_{\alpha}$
(iii) $H_{0}: p_{1} \geq p_{2}$ if $Z<-z_{\alpha}$

2 Comparison of Two Variances

2.1 The F-Distribution

Definition:

Let $X_{\gamma_{1}}^{2}$ and $X_{\gamma_{2}}^{2}$ be independent chi-squared random variables with γ_{1} and γ_{2} degrees of freedom, respectively.

The random variable

$$
F_{\gamma_{1}, \gamma_{2}}=\frac{X_{\gamma_{1}}^{2} / \gamma_{1}}{X_{\gamma_{2}}^{2} / \gamma_{2}}
$$

is said to follow an F-distribution with γ_{1} and γ_{2} degrees of freedom.

Properties:

$$
\begin{gathered}
P\left[F_{\gamma_{1}, \gamma_{2}}<x\right]=P\left[\frac{1}{F_{\gamma_{1}, \gamma_{2}}}>\frac{1}{x}\right]=1-P\left[F_{\gamma_{2}, \gamma_{1}}<\frac{1}{x}\right] \\
f_{1-\alpha, \gamma_{1}, \gamma_{2}}=\frac{1}{f_{\alpha, \gamma_{2}, \gamma_{1}}}
\end{gathered}
$$

2.2 The F-Test

Statistic:

Two Normally-Distributed Populations:

$$
\begin{aligned}
& X^{(1)} \sim N\left(\mu_{1}, \sigma_{1}^{2}\right) \\
& X^{(2)} \sim N\left(\mu_{2}, \sigma_{2}^{2}\right)
\end{aligned}
$$

Taking samples of sizes n_{1} and n_{2} from the populations, we know that

$$
\frac{\left(n_{1}-1\right) S_{1}^{2}}{\sigma_{1}^{2}} \sim \chi_{n_{1}-1}^{2}, \quad \frac{\left(n_{2}-1\right) S_{2}^{2}}{\sigma_{2}^{2}} \sim \chi_{n_{2}-1}^{2}
$$

If $\sigma_{1}^{2}=\sigma_{2}^{2}$, the statistic

$$
S_{1}^{2} / S_{2}^{2}
$$

follows an F -distribution with $n_{1}-1$ and $n_{2}-1$ degrees of freedom.

F-test:

Let S_{1}^{2} and S_{2}^{2} be sample variances based on independent random samples of sizes n_{1} and n_{2} drawn from normal populations with means 1 and 2 and variances σ_{1}^{2} and σ_{2}^{2}, respectively. Then a test based on the statistic

$$
F_{n_{1}-1, n_{2}-1}=\frac{S_{1}^{2}}{S_{2}^{2}}
$$

is called an F-test.
We reject at significance level α :
(i) $H_{0}: \sigma_{1} \leq \sigma_{2}$ if $\frac{S_{1}^{2}}{S_{2}^{2}}>f_{\alpha, n_{1}-1, n_{2}-1}$
(ii) $H_{0}: \sigma_{1} \geq \sigma_{2}$ if $\frac{S_{2}^{2}}{S_{1}^{2}}>f_{\alpha, n_{2}-1, n_{1}-1}$
(iii) $H_{0}: \sigma_{1}=\sigma_{2}$ if $\frac{S_{1}^{2}}{S_{2}^{2}}>f_{\alpha / 2, n_{1}-1, n_{2}-1}$ or $\frac{S_{2}^{2}}{S_{1}^{2}}>f_{\alpha / 2, n_{2}-1, n_{1}-1}$

Abscissa of OC Curves (when $n_{1}=n_{2}$):

$$
\lambda=\frac{\sigma_{1}}{\sigma_{2}}
$$

Comments:

1. The populations must be normally distributed.
2. If possible, the sample sizes n_{1} and n_{2} should be equal.
3. The F-test is not very powerful, β can be quite large.
4. We hope to not reject H_{0}

3 Comparison of Two Means

Overview

When comparing two means, what affect your choice of methods? Draw a map.

All four methods assume normality.

$$
\bar{X}^{(1)} \sim N\left(\mu_{1}, \sigma_{1}^{2} / n_{1}\right), \quad \bar{X}^{(2)} \sim N\left(\mu_{2}, \sigma_{2}^{2} / n_{2}\right)
$$

3.1 Variances Known

Statistic:

$\overline{X_{1}}-\overline{X_{2}}$ is normal with mean $\mu_{1}-\mu_{2}$ and variance $\sigma_{1}^{2} / n_{1}+\sigma_{2}^{2} / n_{2}$ So we can use the statistic to do Z-test:

$$
Z=\frac{\bar{X}^{(1)}-\bar{X}^{(2)}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\sigma_{1}^{2} / n_{1}+\sigma_{2}^{2} / n_{2}}}
$$

Confidence Interval:

$100(1-\alpha) \%$ two sided confidence interval for $\mu_{1}-\mu_{2}$

$$
\mu_{1}-\mu_{2}=\bar{X}^{(1)}-\bar{X}^{(2)} \pm z_{\alpha / 2} \sqrt{\sigma_{1}^{2} / n_{1}+\sigma_{2}^{2} / n_{2}}
$$

Reject H_{0} :

We reject at significance level α :
(i) $\mathrm{H}_{0}: \mu_{1}-\mu_{2}=\left(\mu_{1}-\mu_{2}\right)_{0}$ if $\left|\frac{\bar{X}_{1}-\bar{X}_{2}-\left(\mu_{1}-\mu_{2}\right)_{0}}{\sqrt{\sigma_{1}^{2} / n_{1}+\sigma_{2}^{2} / n_{2}}}\right|>z_{\alpha / 2}$
(ii) $\mathrm{H}_{0}: \mu_{1}-\mu_{2} \leq\left(\mu_{1}-\mu_{2}\right)_{0}$ if $\quad \frac{\bar{X}_{1}-\bar{X}_{2}-\left(\mu_{1}-\mu_{2}\right)_{0}}{\sqrt{\sigma_{1}^{2} / n_{1}+\sigma_{2}^{2} / n_{2}}}>z_{\alpha}$
(iii) $\mathrm{H}_{0}: \mu_{1}-\mu_{2} \geq\left(\mu_{1}-\mu_{2}\right)_{0}$ if $\quad \frac{\bar{X}_{1}-\bar{X}_{2}-\left(\mu_{1}-\mu_{2}\right)_{0}}{\sqrt{\sigma_{1}^{2} / n_{1}+\sigma_{2}^{2} / n_{2}}}<-z_{\alpha}$

Abscissa of OC Curves (when $n=n_{1}=n_{2}$):

$$
d=\frac{\left|\mu_{1}-\mu_{2}\right|}{\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}}
$$

For $n_{1} \neq n_{2}$:
The table is used with the equivalent sample size

$$
n=\frac{\sigma_{1}^{2}+\sigma_{2}^{2}}{\sigma_{1}^{2} / n_{1}+\sigma_{2}^{2} / n_{2}}
$$

3.2 Equal but Unknown Variances

Statistic:

$$
Z=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\sigma^{2}\left(1 / n_{1}+1 / n_{2}\right)}}
$$

Define the pooled estimator for the variance:

$$
S_{p}^{2}=\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{n_{1}+n_{2}-2}
$$

Then the statistic:

$$
T_{n_{1}+n_{2}-2}=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{S_{p}^{2}\left(1 / n_{1}+1 / n_{2}\right)}}
$$

Confidence Interval:

$100(1-\alpha) \%$ two sided confidence interval for $\mu_{1}-\mu_{2}$

$$
\left(\bar{X}_{1}-\bar{X}_{2}\right) \pm t_{\alpha / 2, n_{1}+n_{2}-2} \sqrt{S_{p}^{2}\left(1 / n_{1}+1 / n_{2}\right)}
$$

Reject H_{0} :

We reject at significance level α :
(i) $H_{0}: \mu_{1}-\mu_{2}=\left(\mu_{1}-\mu_{2}\right)_{0}$ if $\left|T_{n_{1}+n_{2}-2}\right|>t_{\alpha / 2, n_{1}+n_{2}-2}$
(ii) $H_{0}: \mu_{1}-\mu_{2} \leq\left(\mu_{1}-\mu_{2}\right)_{0}$ if $T_{n_{1}+n_{2}-2}>t_{\alpha, n_{1}+n_{2}-2}$
(iii) $H_{0}: \mu_{1}-\mu_{2} \geq\left(\mu_{1}-\mu_{2}\right)_{0}$ if $T_{n_{1}+n_{2}-2}<-t_{\alpha, n_{1}+n_{2}-2}$

Abscissa of OC Curves (when $n=n_{1}=n_{2}$):

$$
d=\frac{\left|\mu_{1}-\mu_{2}\right|}{2 \sigma}
$$

Remember when reading the OC curve, use a modified $n^{*}=2 n-1$.
As before, when σ is unknown, we must either use an estimate or express the deviation in terms of σ.

3.3 (Inequal) and Unknown Variances

The Welch-Satterthwaite Approximation:

Let $X^{(1)}, \ldots, X^{(1)}$ be k independent normally distributed random variables with variances $\sigma_{1}^{2}, \ldots, \sigma_{k}^{2}$.

Let $s_{1}^{2}, \ldots, s_{k}^{2}$ be sample variances based on samples of sizes n_{1}, \ldots, n_{k} from the k populations, respectively. Let $\lambda_{1}, \ldots, \lambda_{k}>0$ be positive real numbers and define

$$
\gamma:=\frac{\left(\lambda_{1} s_{1}^{2}+\cdots+\lambda_{k} s_{k}^{2}\right)^{2}}{\sum_{i=1}^{k} \frac{\left(\lambda_{i} s_{i}^{2}\right)^{2}}{n_{i}-1}}
$$

Then the following is approximately a chi-squared distribution with γ degrees of freedom:

$$
\gamma \cdot \frac{\lambda_{1} s_{1}^{2}+\lambda_{2} s_{2}^{2}+\cdots+\lambda_{k} s_{k}^{2}}{\lambda_{1} \sigma_{1}^{2}+\lambda_{2} \sigma_{2}^{2}+\cdots+\lambda_{k} \sigma_{k}^{2}}
$$

For the case $\mathbf{k}=2, \lambda_{1}=1 / n_{1}$ and $\lambda_{2}=n_{1}$

$$
\gamma=\frac{\left(S_{1}^{2} / n_{1}+S_{2}^{2} / n_{2}\right)^{2}}{\frac{\left(S_{1}^{2} / n_{1}\right)^{2}}{n_{1}-1}+\frac{\left(S_{2}^{2} / n_{2}\right)^{2}}{n_{2}-1}}
$$

The following is approximately a chi-squared distribution with γ degrees of freedom:

$$
\gamma \cdot \frac{S_{1}^{2} / n_{1}+S_{2}^{2} / n_{2}}{\sigma_{1}^{2} / n_{1}+\sigma_{2}^{2} / n_{2}}
$$

And the statistic below follows a T-distribution with γ degrees of freedom.

$$
T_{\gamma}=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)_{0}}{\sqrt{S_{1}^{2} / n_{1}+S_{2}^{2} / n_{2}}}
$$

Welch's (pooled) T-test for Equality of Means

$$
T_{\gamma}=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)_{0}}{\sqrt{S_{1}^{2} / n_{1}+S_{2}^{2} / n_{2}}}
$$

We reject at significance level α :
(i) $H_{0}: \mu_{1}-\mu_{2}=\left(\mu_{1}-\mu_{2}\right)_{0}$ if $\left|T_{\gamma}\right|>t_{\alpha / 2, \gamma}$
(ii) $H_{0}: \mu_{1}-\mu_{2} \leq\left(\mu_{1}-\mu_{2}\right)_{0}$ if $T_{\gamma}>t_{\alpha, \gamma}$
(iii) $H_{0}: \mu_{1}-\mu_{2} \geq\left(\mu_{1}-\mu_{2}\right)_{0}$ if $T_{\gamma}<-t_{\alpha, \gamma}$

Comments

1. In practice, we round γ down to the nearest integer.
2. Power calculations are much more difficult. There are no simple OC curves for Welch's test.
3. As remarked earlier, it is not a good idea to pre-test for equal variances and then make a decision whether to use Student's or Welch's test. In fact, current recommendations are to always use Welch's test.

3.4 Paired T-Test

Statistic

Assume that X and Y follow a joint bivariate normal distribution. Then $\mathrm{D}=\mathrm{X}-\mathrm{Y}$ follows a normal distribution. Then:

$$
T_{n-1}=\frac{\bar{D}-\mu_{D}}{\sqrt{S_{D}^{2} / n}}
$$

Reject H_{0}
We reject at significance level α :
(i) $\mathrm{H}_{0}: \mu_{\mathrm{D}}=\left(\mu_{\mathrm{D}}\right)_{0}$ if $\left|T_{n-1}\right|>t_{\alpha / 2, n-1}$
(ii) $\mathrm{H}_{0}: \mu_{\mathrm{D}} \leq\left(\mu_{\mathrm{D}}\right)_{0}$ if $T_{n-1}>t_{\alpha, n-1}$
(iii) $\mathrm{H}_{0}: \mu_{\mathrm{D}} \geq\left(\mu_{\mathrm{D}}\right)_{0}$ if $T_{n-1}<-t_{\alpha, n-1}$

3.5 Paired vs. Pooled T-Tests

Positive relation makes a paired T-test more powerful.

1. $\rho_{X Y}>0$: Paired T-Test is more powerful
2. $\rho_{X Y} \leq 0$: Pooled T-Test is more powerful

4 Test Correlation Coefficient

Estimator:

The natural unbiased estimators:

$$
\begin{aligned}
\widehat{\operatorname{Var}[X}] & =\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \\
\operatorname{Cov}[X, Y] & =\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)
\end{aligned}
$$

The natural choice for an estimator for the correlation coefficient is then:

$$
R:=\hat{\rho}=\frac{\sum\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sqrt{\sum\left(X_{i}-\bar{X}\right)^{2}} \sqrt{\sum\left(Y_{i}-\bar{Y}\right)^{2}}}
$$

Statistic:

When (X, Y) follows a bivariate normal distribution, and we set large sample size n, then the Fisher transformation of R

$$
\frac{1}{2} \ln \left(\frac{1+R}{1-R}\right)=\operatorname{Artanh}(R)
$$

is approximately normally distributed with

$$
\mu=\frac{1}{2} \ln \left(\frac{1+\varrho}{1-\varrho}\right)=\operatorname{Artanh}(\varrho), \quad \sigma^{2}=\frac{1}{n-3}
$$

Therefore we have the statistic:

$$
\begin{aligned}
Z & =\frac{\sqrt{n-3}}{2}\left(\ln \left(\frac{1+R}{1-R}\right)-\ln \left(\frac{1+\varrho_{0}}{1-\varrho_{0}}\right)\right) \\
& =\sqrt{n-3}\left(\operatorname{Artanh}(R)-\operatorname{Artanh}\left(\varrho_{0}\right)\right)
\end{aligned}
$$

100(1- α) \% Confidence Interval for ρ :

$$
\begin{gathered}
{\left[\frac{1+R-(1-R) e^{2 z_{\alpha / 2} / \sqrt{n-3}}}{1+R+(1-R) e^{2 z_{\alpha / 2} / \sqrt{n-3}}}, \frac{1+R-(1-R) e^{-2 z_{\alpha / 2} / \sqrt{n-3}}}{1+R+(1-R) e^{-2 z_{\alpha / 2} / \sqrt{n-3}}}\right]} \\
\tanh \left(\operatorname{Artanh}(R) \pm \frac{z_{\alpha / 2}}{\sqrt{n-3}}\right)
\end{gathered}
$$

Reject H_{0} :

$H_{0}: \rho=\rho_{0}$ if $\left|\sqrt{n-3}\left(\operatorname{Artanh}(R)-\operatorname{Artanh}\left(\varrho_{0}\right)\right)\right|>z_{\alpha / 2}$ or ρ_{0} is not in the confidence interval

5 Non-Parametric Comparisons of Locations

5.1 The Wilcoxon Rank-Sum Test

Statistic

Let X and Y be two random samples following some continuous distributions.
Let X_{1}, \ldots, X_{m} and $Y_{1}, \ldots, Y_{n}, \mathrm{~m} \leq \mathrm{n}$, be random samples from X and Y and associate the rank $R_{i}, \mathrm{i}=1, \ldots, \mathrm{~m}+\mathrm{n}$, to the $R_{i}^{\text {th }}$ smallest among the $\mathrm{m}+\mathrm{n}$ total observations. If ties in the rank occur, the mean of the ranks is assigned to all equal values.

Then the test based on the statistic

$$
W_{m}:=\text { sum of the ranks of } X_{1}, \ldots, X_{m}
$$

is called the Wilcoxon rank-sum test.

Reject H_{0} for small m,n

We reject $H_{0}: \mathrm{P}[\mathrm{X}>\mathrm{Y}]=1 / 2$ (and similarly the analogous one-sided hypotheses) at significance level α if W_{m} falls into the corresponding critical region.

Reject H_{0} for large m,n

W_{m} is approximately normally distributed with

$$
\mathrm{E}\left[W_{m}\right]=\frac{m(m+n+1)}{2}, \quad \operatorname{Var}\left[W_{m}\right]=\frac{m n(m+n+1)}{12}
$$

If there are many ties, the variance may be corrected by taking

$$
\operatorname{Var}\left[W_{m}\right]=\frac{m n(m+n+1)}{12-\sum_{\text {groups }} \frac{t^{3}+t}{12}}
$$

Then

$$
Z=\frac{W_{m}-E\left[W_{m}\right]}{\sqrt{\operatorname{Var}\left[W_{m}\right]}}
$$

We reject at significance level α :
(i) $\mathrm{H}_{0}: \mathrm{P}\left[\mathrm{X}_{\mathrm{m}}>\mathrm{X}_{\mathrm{n}}\right]=0.5$ if $|\mathrm{Z}|>z_{\alpha / 2}$
(ii) $\mathrm{H}_{0}: \mathrm{P}\left[\mathrm{X}_{\mathrm{m}}>\mathrm{X}_{\mathrm{n}}\right] \leq 0.5$ if $\mathrm{Z}>z_{\alpha}$
(iii) $\mathrm{H}_{0}: \mathrm{P}\left[\mathrm{X}_{\mathrm{m}}>\mathrm{X}_{\mathrm{n}}\right] \geq 0.5$ if $\mathrm{Z}<-z_{\alpha}$

5.2 Non-Parametric Paired Test

Assumption

Let X and Y be two independent random variables that follow the same distribution but differ only in their location, i.e., $\mathrm{X}^{\prime}:=\mathrm{X}-\delta$ and Y are independent and identically distributed.
Then δ is the median of $\mathrm{D}=\mathrm{X}-\mathrm{Y}$, and D will be symmetric about δ.
Notice, X and Y themselves do not need to be symmetric.

Method

Transformed to the Wilcoxon signed-rank test for median, for the random variable D. Let's write out the transformation:

1. $\mathrm{H}_{0}: M_{\mathrm{D}}=\left(M_{\mathrm{D}}\right)_{0} \longleftarrow$
2. $\mathrm{H}_{0}: M_{\mathrm{D}} \leq\left(M_{\mathrm{D}}\right)_{0} \longleftarrow$
3. $\mathrm{H}_{0}: M_{\mathrm{D}} \geq\left(M_{\mathrm{D}}\right)_{0} \longleftarrow$
