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DESIGN A ROLLER COASTER

Abstract

In this problem, we are required to design a safe and exciting roller coaster. To solve the problem,
we set up a design model of the trajectory with Solid-works and Planet Coaster. Then we derive the
equations of motion based on basic dynamic laws. Next with Euler’s method, we estimate the solutions
and simulate of the roller coaster’s motion using MATLAB. For safety and excitement judgement, we
define several parameters related to position, velocity, and acceleration to represent the degree of safety
and excitement. The value of these parameters and their simulation with time are also obtained with
MATLAB. Finally we come to the conclusion that the designed roller coaster is safe and exciting.
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1 Introduction
Roller coaster is one of the most exciting recreation facilities in amusement park. In this article, we are

going to design a roller coaster which is safe and exciting. We will first give a concept diagram of our roller
coaster’s whole trajectory, then divide it into five parts and analyse them respectively. We are going to use
the basic kinematics laws to construct second order ODEs for the motion of the roller coaster car, and apply
the Euler Method to obtain an approximate solution for the ODEs, from which we could obtain the velocity
and acceleration at any instant of time.

In Model Section, we will first give our method of judgement of safety and excitement, then introduce
the basic laws and methods we will use in this project. Moreover, for each part of our trajectory, we will
give a simple model with parameters.

In Result Section, we will first give the overall results of our whole model, and give the proof of the
safety and excitement. Then we will explain in details about how we obtain the results and the motion of
the car in each part of the trajectory.

Finally we will draw a conclusion and discuss the limitations and advantages of our model and give
some suggestions about how to improve the model.

2 Model

2.1 Problem Overview
In this article, we are going to design a roller coaster that is safe and exciting. We will design the trajec-

tory of the roller coaster and clearly give the visualization of our trajectory first. Based on the trajectory and
the initial conditions, we derive motions of equations and then use the Euler Method to find the distance,
velocity, acceleration with respect to t. Using the result of acceleration, velocity, and height, we then find
the value of Safety and Excitement referring to our definition below, which prove that our goal of safety
and excitement is reached.

2.2 Definition
2.2.1 Parameter Definition

First we assume that passengers along with the car are considered as particles. Then we define the
G-axes with three types of accelerations for human body as Figure 2.1 shows[1]:

• Forward acceleration ax along G-x axes in the direction of the velocity,

• Lateral acceleration ay along G-y axes in the direction of the radius of curvature,

• Upward acceleration az along G-z axes in the direction of the normal vector.

Based on the above definition, the related parameters representing the value of accelerations are defined
as

Gi = ai/g (1)

for i=x,y,z, where g = 9.78m/s2 is the gravity near earth’s surface.
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Figure 2.1: The definition of G-axes[4].

2.2.2 Safety Judgement Definition

1. According to Kumar and Norfleet’s study[2], the influence of acceleration differs with different types
of accelerations. For Gz, it is shown that if Gz=4.8 g, safety is satisfied when the maintaining time
is less than 2.5 s. For Gy=5.5 g, safety is satisfied when the maintaining time is less than 2.5 s. For
Gx, if Gx=6.0 g with passengers sitting straight 90 degree, safety is satisfied when the maintain time
is less than 30 s.

To simplify the model, in this project, it is assumed that if:

Gz < 4.8g, (2)

Gy < 5.5g, (3)

Gx < 6.0g, (4)

with the maintaining time < 2.5 s, the safety requirement is satisfied.

Since in this project, there’s no other forward accelerating force except gravity, so

Gx ≤ g +
afriction

g
< 5g

is always satisfied since friction is relatively small with respect to gravity. In this article, we will
calculate the concrete value of Gz and Gy to indicate they are under a safe range.

2. Moreover, we should consider the weight capacity of the track. In order to ensure safety, we should
make sure that the force applied on the track should not larger than certain value. According to
Newton’s Laws, we have

F = Maz = MGzg
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Since the weight capacity of different materials varies a lot. Typically most of the materials could
stand weight larger than 20000N. If we choose M = 1000kg, the corresponding Gz that create such
weight should be 20, which is much larger than the largest GZ that human body could bear. Hence
when the acceleration is less than the limit of human endurance, both the safety of human body and
the track structure could be ensured.

3. Finally, we should ensure that at every point of the trajectory, the speed of the car is larger than 0m/s.

2.2.3 Excitement judgement definition

It is the acceleration of the human body that can be sensed and converts to excitement. Based on the
definition of the three types of acceleration, it is noticed that they have different effect on excitement.
When the values Gx, Gy, Gz are the same, the lateral acceleration ax representing the orientation excites
human bodies most, followed by the forward acceleration, while the upward acceleration has the least effect.
Therefore, a parameter Sexcitement is defined to quantify the degree of excitement:

S = k1(4Gx + 5Gy + 3Gz) (5)

Moreover, we notice that the degree of excitement also has some relation to the speed of human body.
Generally speaking, when human body is moving at a higher speed, the human would feel much more sense
of excitement. Hence another item relate to speed should be added.

S = k1(4Gx + 5Gy + 3Gz + k2v) (6)

Finally, when human body is in a high altitude, they will feel much more exciting. Hence we add the
third item relate to altitude into this equation

S = k1(4Gx + 5Gy + 3Gz + k2v + k3H) (7)

Among all the factors, the acceleration influence the degree of the excitement most, while the speed
influence the least. Since when passengers are moving at a high speed, they could hardly feel how fast they
are. Consequently, finally we choose the coefficients k1 = 1, k2 = 0.05, k3 = 0.1. The unit for H and v is
in SI.

S = 4Gx + 5Gy + 3Gz + 0.05v + 0.1H (8)

The larger S represents higher degree of excitement. When passenger are resting on the reference point,
S equals 0. And for a car being suddenly slammed, its acceleration is around Gx = 30m/s2 ≈ 3g [5] and
S = 12 which already has relatively strong excitement on human body.
Therefore we assume the excitement requirement is satisfied when:

S > 12 (9)

2.3 Assumptions and Laws
2.3.1 Natural axes –The G-axes

In this article, the main focus is the passengers’ acceleration on the roller coaster. As introduced in
section 2.2.1, our start point is to set up a natural axes referring to passengers’ motion, which is defined as
the G-axes. Our central point of solving this problem is to calculate and analysing the value of velocity and
Gi along each axes.



2.3 Assumptions and Laws Team No. 190 Page 6 of 29

2.3.2 Euler’s Method[3]

To calculate and analysing the distance, velocity and acceleration, we need to solve many complex
second-order ordinary differential equations. Mathematical methods might not working so well when solv-
ing the complex ODEs. Euler’s method is a numerical method helping find the unique solution of the
second-order ordinary differential equation (ODE) in our project:

d2r

dt2
=
F (v, r, t)

m

through the initial conditions v(0)=v0, r(0)=r0, we will find the position and velocity of our particle at
any instant of time t.

Newton’s equation of motion can be rewritten as a pair of coupled first-order ODEs, like this:

dv

dt
=
F (v(t), r(t), t)

m

rt = v(t)

write v(t) = f(t) = rt, and further we transform

dv

dt
=
df

dt
= G(f(t), t)

with the initial condition is given as f(0)=f0.
Consider the Taylor expansion of a function f at time (t+∆t) and ignore the terms with order of ∆t

higher than 1, we can get this formula:

f(t+ ∆t) ≈ f(t) +
f

t
∆t = f(t) +G(f(t), t)∆t

Using this formula, the approximate value f ∗(t+∆t) can be found if the value of f (t) is known. That
means, through Euler’s method, we start at t0=0 where f(0)=f0 is known exactly, using the slope k of the
curve at the left end of the interval (t0, t1), to get the approximate value f ∗ of the other end, as shown in
Figure 2.2 below

Figure 2.2: Figure of Euler method

In subsequent steps, the method is used continuously to obtain an approximation of the function f. Since
the computer is a discrete machine, we need a discrete time step ∆t to represent the discrete set of points at
the time ti= i∆t, and then the algorithm is as follows



2.3 Assumptions and Laws Team No. 190 Page 7 of 29

f ∗
0 = f0

k = G(f ∗(ti), ti)

f ∗(ti+1) = f ∗(ti) + k∆t

Given the initial value f(0)=f0, the equation can help us to get the approximate values in the required
time interval. that is to numerically solve the first-order ODE with that initial condition.

2.3.3 Law of Conservation of Energy

In this article, we assume that all the motions are under the category of classical mechanics. Hence we
could use the following basic laws from kinematics and dynamics.

The energy is conserved during the whole process of motion. The total amount of energy is the grav-
itational potential energy the roller coaster hold first. We assume that work against resistance is the only
dissipation of energy during the process. Hence the equation for conservation of energy could be written as

Ep0 = Ep(t) + Ek +Wf (10)

2.3.4 Newton’s Laws of Motion

The most basic and important laws we will used in this article is Newton’s Laws of Motion. In this
article, we could consider problems under classical mechanics, where the mass m could be regarded as a
constant. Hence we could write the Newton’s equation as follow:∑

~F =
d(m~v)

dt
= m

d~v

dt
= m

d2~r

dt2
(11)

~F12 = − ~F21 (12)

2.3.5 Motion with Resistance

In this article, we consider two types of resistance. The first is the friction between the roller coaster car
and the track, which we note it as f1

~f1 = −µN(
~v

v
) (13)

where µ is the friction coefficient, which is usually between 0 and 1, N is the force that car applied
perpendicularly on the track.

The second is the quadratic drag between the roller coaster car and the air. Since the car is enormous
with large mass and high speed, we consider the drag to be quadratic instead of linear, which we note it as
f2

~f2 = −βv2(~v
v

) (14)

with the coefficient β

β =
1

2
ρCdA (15)

where ρ is the fluid density, Cd is the drag coefficient, which is usually between 0.25 and 0.5 for cars, A
is the cross-sectional area perpendicular to the direction of motion.

Consequently, the total resistance equals the sum of f1 and f2.
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2.3.6 Dynamics of Circular Motion

Roller coaster usually follows a trajectory that has a circular shape. When choosing the roller coaster
car as the frame of reference, we should consider the centrifugal ’force’, Fc

Fc = −m~ω × (~ω × ~r) (16)

2.4 Basic Model
The overall concept diagram of our roller coaster is shown below in Figure 4.1 and 2.4. To make it

easier to analyse the equations of motion, we divided the whole trajectory into five parts and analyze them
respectively.

Figure 2.3: Concept Diagram of Roller Coaster

Figure 2.4: Solidworks diagram of Roller Coaster
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Using solid works, we could simplify the concept diagram of our roller coaster, as shown above in
Figure 2.4. In order to analyze the motion of the whole trajectory, we divided the track into five parts, as
shown below in Figure 2.5

2.4.1 The First Cant Track

(a) The First Cant Track

As shown in Figure (a), the first cant track are formed of four straight line parts:

• 20-meter long horizontal track

• 30-meter height rising slope with 75o inclining angle

• 30-meter height falling slope with 75o inclining angle

• 20-meter long horizontal track

2.4.2 The Tri-semicircle Circle Track

(b) The Tri-semicircle Circle Track

As shown in Figure (b), the tri-semicircle track are formed of three half-circle parts:

• 16-meter height up-circle with 8-meter radius

• 16-meter height mid-circle with 8-meter radius

• 16-meter height down-circle with 8-meter radius
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2.4.3 The Upward Cant Track

(c) The Upward Cant Track

As shown in Figure (c), the upward cant track are formed of three straight line parts:

• 20-meter long horizontal track

• 22-meter height rising slope with 60o inclining angle

• 10-meter long horizontal track

2.4.4 The Double Helix Track

(d) The Double Helix Track

As shown in Figure (d), the double helix track looks like a flat, twice-wound spring.
The radius of the circle is 8 meters, with a screw pitch of 2π meters each.



2.4 Basic Model Team No. 190 Page 11 of 29

2.4.5 The Downward Cant and Circular Track

(e) The Downward Cant and Circular Track

As shown in Figure (e), The downward cant and circular track are formed of four parts:

• 16-meter height falling slope with 75o inclining angle

• 26-meter long horizontal track

• horizontal half-circle track with (8+2π)-meter radius

• 20-meter long horizontal track leading it back to the origin
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3 Results

3.1 The Whole Model
According to our calculation, we obtain the detailed values of distance, speed, and time in each part

of the model. The model is in Figure 3.1 and the data is recorded in Table 1. The direction of the roller
coaster is always tangential to the trajectory. Based on the calculated values, we find the total length of the
trajectory L and the duration T

L = 394.7507 + 33.3597 = 428.1104[m]
T = 32.3094 + 16.6798 = 48.9892[s]

Figure 3.1: Figure of Each Point’s Position

s[m] v[m/s] t[s]
Origin -33.3597 2.0000 -16.6798

0 0 0 0
1 31.0583 23.5084 2.6231
2 51.0583 22.9152 3.4938
3 76.1910 14.2516 4.8664
4 101.3238 14.0754 6.6409
5 126.4565 22.4271 8.0352
6 146.4565 21.8213 8.9393
7 171.8599 5.3568 10.8123
8 181.8599 4.3289 12.8775
9 283.1732 1.5490 24.4635

10 303.8787 20.2203 26.5508
11 329.8787 19.3877 27.8638
12 374.7507 18.9860 30.2026

Final 394.7507 0 32.3094

1 2

Table 1: The Whole Trajectory Values
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The followings are the graphs of Gx, Gy, Gz, S depending on time t for the whole process. These four
graphs of Gi and S are generalized from plots in MATLAB for each five parts as we have divided into. All
the single plots and codes in MATLAB is attached in the Appendix

(a) Gx vs t in the whole time interval (b) Gy vs t in the whole time interval

(c) Gz vs t in the whole time interval (d) S vs t in the whole time interval

Figure 3.2: Relation with Respect to t in the Whole Time Interval

1. The Safety Judgement
According to Figure 3.2(a) and Figure 3.2(b), we notice the maximal Gx is 1, while the maximal Gy

is 2.5, which are below the safe range according to Equation (3) and (4).

As for Gz, the maximal value is 6.5 > 4.8 which is the limit in Equation (2). But value of Gz larger
than 4.8 only lasting for 1 second, much smaller than the maximal lasting time 2.5s, hence it is also
safe according to NASA’s study[2].

From our calculation, the safety of our design is confirmed. And we find that the most significant

1When the car is at the highest point with altitude equals 30 meters, the travelling distance and the time is 0.
2All the codes needed to obtain the results in MATLAB is attached in the appendix.
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limiting factor of safety is the upward acceleration, while the forward acceleration and the lateral
acceleration can hardly exceed the limitation.

2. The Excitement Judgement
The degree of excitement S with respect to time interval t is shown in Figure 3.2(d). When S ≥ 12
we regard that the amusement is very exciting. We find that the largest S is even larger than 20.

Also we noticed many sudden change of S. Passengers would experience a period of high level of S
while suddenly rise into a very high level, which is really exciting.

Consequently, the excitement requirement of our roller coaster could be regarded as satisfied.

3.2 Detailed Model Analysis
Before analyze the model in details, we define the following

• The gravitational acceleration: g = 9.78[m/s2]

• The mass of the roller coaster: M = 1000[kg]

• The friction coefficient: µ = 0.05 for strait track, µ = 0.001 for circular track

• The damping coefficient: β =
1

2
ρCdA =

1

2
× 1.293 × 0.25 × 10 = 0.37[kg/m]

• We will choose the 20 meter horizontal segment as the potential reference.

3.2.1 The First Cant Track

1. The Start Point
The roller coaster is first taken to the highest point which is H = 30[m] above the starting location.
The slope has an angel of 64o, with a length of 33.3597m. Assume the electromotor drive the roller
coaster at a constant speed of 2m/s, then it takes the car 16.6798s to arrive at the top. Choose this
time as the original time t = 0s. Then choosing the starting location as the potential reference point,
the roller coaster would possess a high potential energy, and we note it as Ep0.

Ep0 = MgH = 293400[J ] (17)

2. The Downward Cant
Now we consider the downward cant track with the dip angle θ = 75o. We use the vx, vy, vz as
parametrization, which is the forward speed in the direction of Gx, Gy, Gz. According to Newton’s
law we obtain Using Equation (11) and (12), we could write the Newton equations

Mv̇x = Fx = f

Mv̇y = Fy = 0

Mv̇z = Fz = 0

(18)

where
f = −µN − βv2x = −µN − βv2x
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N = Mgcos(θ)

Using the above equations, we could get the ODE equation for vx below:

Mgsin(θ)cos(θ) − (µN + βv2x)cos(θ) = Mcos(θ)v̇x (19)

Insert the concrete value into this equation, we have

v̇x + 3.7 × 10−4v2x − 9 = 0 (20)

Using Matlab, we obtain the following data for this motion:

x[R] vx[m/s] v̇x[m/s2] t[s]
0 0 0 0

4.9994 9.4770 8.9668 1.0543
9.9989 13.3905 8.9337 1.4915

19.9993 18.9029 8.8678 2.1107
31.0578 23.5084 8.7955 2.6231

3. The Horizontal Track
Now we comes the first horizontal track. Assume the total length of this track is 20m. Using Equation
(3.2.4), and apply θ = 0o, we obtain

v̇x + 3.7 × 10−4v2x + 0.489 = 0 (21)

Using Matlab, we obtain the following data for this motion:

x[R] vx[m/s] v̇x[m/s2] t[s]
0 0 0 0

4.9986 23.3605 -0.6919 2.8364
9.9981 23.2123 -0.6894 3.0511

19.9983 22.9152 -0.6843 3.4948

Using Matlab to apply Euler’s method, we approximately solve the ODE Equation (19) and (20) and further
get Gx, Gy, Gz as well as Sexcitement related to time t based on Equation (1) ∼ (4). The code and figures are
attached in Appendix. 3

3.2.2 The Tri-semicircle Track

1. The Upward Circle Track
Then the upward half-circle track follows. Assume the angle for the car to move up is θ and the radius
of the circle is R. We assume R is 8m. Then

θ =

∫ t

0

vx
R
dt (22)

3Using cant.m, horizontal.m, climb.m
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Using Equation (11) and (12), we could write the Newton equations
Mv̇x = Fx = −Mgsin(

∫ t

0

vx
R
dt) − µ

[
M
v2x
R

+Mgcos(

∫ t

0

vx
R
dt)

]
− βv2x

Mv̇y = Fy = 0

Mv̇z = Fz =
Mv2x
R

(23)

Using the above equations, we could get the ODE equation for vx below:

v̇x +
βv2x
M

v̇2 + gsin(

∫ t

0

vx
R
dt) + µ

[
v2x
R

+ gcos(

∫ t

0

vx
R
dt)

]
= 0 (24)

Using Matlab with Euler’s law, with the estimation of θ as:

θ =

∫ t

0

vx
R
dt = Σ

vx
R
dt (25)

together with 
Gx =

v̇x
g

Gy = 0

Gz =
v̇z
g

=
v2x
gR

(26)

Using Matlab, we obtain the following data for this motion:

θ[R] vx[m/s] v̇x[m/s2] an[m/s2] t[s]
0 22.9152 0 0 3.4938
π/4 21.8158 -7.1701 59.4912 3.7727
π/2 19.0369 -9.9794 45.3004 4.0792
π 14.2516 -0.0937 25.3096 4.8673

2. The Middle Circle Track
Then the horizontal half-circle track follows. Assume the radius of the circle is R. We assume R is
8m and the angle for the car to move forward is θ. We write the Newton’s equations

Mv̇x = Fx = −µ(M
v2x
R

+Mg) − βv2x

Mv̇y = Fy =
Mv2x
R

Mv̇z = Fz = 0

(27)

Using the above equations, we could get the ODE equation for v below:

v̇x +
βv2x
M

+ µ(M
v2x
R

+Mg) = 0 (28)
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together with 
Gx =

v̇x
g

Gy =
v̇y
g

=
v2x
gR

Gz = 0

(29)

Using Matlab, we obtain the following data for this motion:

θ[R] vx[m/s] v̇x[m/s2] an[m/s2] t[s]
0 14.2516 0 0 4.8673
π/4 14.2074 -0.0999 25.2311 5.3079
π/2 14.1632 -0.0993 25.0747 5.7508
π 14.0754 -0.0981 24.7646 6.6409

3. The Downward Circle Track
Then the upward half-circle track follows. Assume the angle for the car to move up is θ and the radius
of the circle is R. We assume R is 8m. Then

θ =

∫ t

0

vx
R
dt (30)

Using Equation (11) and (12), we could write the Newton’s equations
Mv̇x = Fx = −Mgsin(π +

∫ t

0

vx
R
dt) − µ

[
M
v2x
R

+Mgcos(π +

∫ t

0

vx
R
dt)

]
− βv2x

Mv̇y = Fy = 0

Mv̇z = Fz =
Mv2x
R

(31)

Using the above equations, we could get the ODE equation for v below:

v̇x +
βv2x
M

v̇2 + gsin(π +

∫ t

0

vx
R
dt) + µ

[
v2x
R

+ gcos(π +

∫ t

0

vx
R
dt)

]
= 0 (32)

Using Matlab with Euler’s law, with the estimation of θ as:

θ =

∫ t

0

vx
R
dt = Σ

vx
R
dt (33)

together with 
Gx =

v̇x
g

Gy = 0

Gz =
v̇z
g

=
v2x
gR

(34)
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Using Matlab, we obtain the following data for this motion:

θ[R] vx[m/s] v̇x[m/s2] an[m/s2] t[s]
0 14.0754 0 0 6.6409
π/4 15.5821 6.8140 30.3501 7.0718
π/2 18.7581 9.6258 43.9835 7.4396
π 22.4271 -0.2549 62.8718 8.0352

Using Matlab to apply Euler’s method, we approximately solve the ODE Equation (24), (28) and (32). Then
further get Gx, Gy, Gz as well as Sexcitement related to time t based on Equation (26), (29) and (34). The
code and figures are attached in Appendix. 4

3.2.3 The Upward Cant Track

1. The Horizontal Track
The length of this track is 20 meters. The procedures are similar to what we have done in Section
3.2.1, hence we directly list the results here. Using Matlab, we obtain the following data for this
motion:

x[R] vx[m/s] v̇x[m/s2] t[s]
0 22.4271 0 8.0352

4.9978 22.2762 -0.6736 8.2588
9.9996 22.1247 -0.6711 8.4841

14.9980 21.9729 -0.6686 8.7108
19.9992 21.8213 -0.6662 8.9393

2. The Upward Track
The height of the cant is 22m, with a dip angle θ equals 60o. Similarly, we could obtain the equation
of motion as follows

−Mgsin(θ) − µMgcos(θ) − βv2x = Mv̇x (35)

Apply the constant quantities, we obtain the following equation

v̇x + 3.7 × 10−4v2x + 8.714 = 0 (36)

Similarly to section 3.1.2, we obtain the ODE’ s solution as well as Gx, Gy, Gz and Sexcitement related
to time t. The terminal state is shown in the Table below. 5

Using Matlab, we obtain the following data for this motion:

4Using upcircle.m, midcircle.m, downcircle.m
5Using cant.m, horizontal.m, climb.m
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x[R] vx[m/s] v̇x[m/s2] t[s]
0 21.8213 0 8.9393

9.9907 17.2958 -8.8248 9.4503
19.9941 11.0990 -8.7597 10.1553
25.4010 5.3568 -8.7246 10.8123

3. The Horizontal Track
After the upward track is a horizontal track of altitude equals 22m. Assume the total length of this
track is 10m. Similarly, using Equation (28) again,

v̇x + 3.7 × 10−4v2x + 0.489 = 0 (37)

Using Matlab, we obtain the following data for this motion:

x[R] vx[m/s] v̇x[m/s2] t[s]
0 5.3568 0 10.8123

4.9998 4.8681 -0.4988 11.7903
9.9997 4.3289 -0.4969 12.8775

3.2.4 The Double Helix Track

After the horizontal track is the double helix track. Assume the angle for the car to move up is θ, then
the car passes the whole double helix track when θ = 3π. The radius of the helix is ρ, and the screw pitch
is 2πk. We assume ρ is 8m, k is 1m. Then

θ =

∫ t

0

vx
ρ
dt (38)

Using Equation (11) and (12), we could write the Newton equations
Mv̇x = Fx = −M ρ√

ρ2 + k2
gsin(π +

∫ t

0

vx
ρ
dt) − µ

[
M
v2x
ρ

+M
ρ√

ρ2 + k2
gcos(π +

∫ t

0

vx
ρ
dt)

]
− βv2x

Mv̇y = Fy = 0

Mv̇z = Fz =
Mv2x
ρ

(39)
Using the above equations , with the estimation of θ as:

θ =

∫ t

0

vx
R
dt = Σ

vx
R
dt (40)

we could get the ODE equation for v below:

v̇x +
βv2x
M

v̇2 +
ρ√

ρ2 + k2
gsin(π +

∫ t

0

vx
ρ
dt) + µ

[
v2x
ρ

+
ρ√

ρ2 + k2
gcos(π +

∫ t

0

vx
ρ
dt)

]
= 0 (41)
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together with 
Gx =

v̇x
g

Gy = 0

Gz =
v̇z
g

=
v2x
gR

(42)

Using Matlab, we obtain the following data for this motion:

θ[R] vx[m/s] v̇x[m/s2] an[m/s2] t[s]
0 4.3289 0 0 12.8775
π/2 13.0976 9.5249 21.4434 14.6215
π 17.9443 -0.1379 40.2495 15.3985
2π 3.2196 -0.0017 1.2958 18.1905
3π 17.7153 -0.1274 39.2288 20.9895
4π 1.5490 0.0063 0.2999 24.4635

Using Matlab to apply Euler’s method, we approximately solve the ODE Equation (41). Then further
get Gx, Gy, Gz as well as Sexcitement related to time t based on Equation (42). The code and figures are
attached in Appendix. 6

3.2.5 The Downward Cant and Circular Track

1. The Downward Cant
The calculation for the downward cant is similar to the first downward track in 3.2.1, so we directly
list results here in the table below, where x is the total displacement along G-x axis. 7

x[m] vx[m/s] v̇x[m/s2] t[s]
0 1.5490 8.9991 24.4625

4.9997 9.6027 8.9659 25.3597
9.9988 13.4790 8.9328 25.7928

14.9986 16.4573 8.8998 26.1268
19.9988 18.9651 8.8669 26.4091
22.7752 20.2203 8.8487 26.5508

2. The Horizontal Track
Followed by the downward cant is a horizontal track whose length equals 26 meters. The calculation
is similar to the middle circle track in 3.2.1, so we directly list our calculation results here in the table
below, where x is the total displacement along G-x axis. 8

6Using orbit.m
7Using cant.m
8Using horizontal.m
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x[m] vx[m/s] v̇x[m/s2] t[s]
0 20.2203 -0.6403 26.5508

5.0010 20.0616 -0.6379 26.7991
10.0004 19.9023 -0.6356 27.0493
15.0016 19.7422 -0.6332 27.3016
20.0016 19.5815 -0.6309 27.5559
26.0009 19.3877 -0.6281 27.8638

3. The Circular Track
Followed by the horizontal track is a circular track with radius equals 8+2π meters. The calculation
is similar to the middle circle track in 3.2.2, so we directly list our calculation results here in the table
below, where θ is the total displacement of rotation angle. 9

θ[R] vx[m/s] v̇x[m/s2] an[m/s2] t[s]
0 19.3877 -0.6281 26.3165 27.8638
π/4 19.2866 -0.1735 26.0426 28.4439
π/2 19.1859 -0.1718 25.7715 29.0271
3π/4 19.0857 -0.1701 25.5030 29.6133
π 18.9860 -0.1684 25.2372 30.2026

4. The Last Horizontal Segment
The last part of the track is also the original 20 meter horizontal segment. In order to slow down
the high-speed roller coaster, we need to apply a large damping coefficient µ0. Since this µ0 is large
enough, we could ignore the influence of quadric drag. Hence this motion could be regarded as a
uniformly retarded motion. We have the following equation

v2 = 2a(x− x0) (43)

t = t0 +
v

a
(44)

Hence we calculate the final state of motion as 10

s[m] v[m/s] a[m/s2] t[s]
394.7507 0 9.3971 32.3094

4 Discussion

4.1 Conclusion
During the whole process, we draw a concept model for the ideal roller coaster and then simplify the

complex model using the assumptions that roller coaster could be regarded as a particle. Also, we ignore
9Using horicircle.m

10Using horizontal.m
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the rotation of tracks and the roller coaster to simplify the calculation.
Using Euler’s Method, we could solve the complex second order ODEs of motion, then Matlab is

applied to find the approximate solution of the equation. Calculate the five models respectively, we finally
obtain the total duration of the ride equals 48.9892[s], covering a track lengthen out to 428.1104[m].

Before our calculation, we set the mass of roller coaster M , the friction coefficient µ, and the damping
coefficient of air drag. Furthermore, the shape and length of the track is determined first, such as the height
and length of the track, the radius and screw pitch of the circle. We could obtain some different results by
changing the value of this constants. In this article, we choose the parameters that can reach to the most
safe and exciting roller coaster.

During the calculation, we find that the friction coefficient would lead to a huge dissipation of energy
due to the large centrifugal ’force’, which make it difficult for the car passing through the helix. Hence we
replace the origin µ with a smaller one for circular track.

4.2 Limitations and Possible Improvement
4.2.1 Shape of the Car Consideration

In this article, we consider the car as a mass point without length and volume. However, actually it is
not the case. If we want to examine the rotation of the roller coaster, we should take into consideration of
its length and volume. However, in this article we only need to find out its Newton’s equations, hence our
model could work well.

To make our model much better, we could consider the shape of the roller coaster car as a long cuboid.
Take into consideration of the rotation of the car and the reverse of the track. To do so, we could try to
consider the normal vector of the track surface.

Planet Coaster[4] can be applied to formulate the structure of the roller coaster, and calculate the three
kinds of accelerations and sense of excitement respectively. We build the concept diagram of the roller
coaster here, and it could also be used to test our model.

4.2.2 Self-rotation Consideration

Figure 4.1: Graph of the self-rotating track

In the above model, we regard the track as a line, and the car as a particle. However,in actual world, the
track of the roller coaster would have a width of three to five meters. So the car can be self-rotating along
the trajectory, as Figure 4,1 shows.

One of our method to estimate the self-rotation effect is:
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Let the initial angular momentum of the roller coaster be L, the projected radius of the track in the
direction parallel to the track is R, and the rising height of the track is H .

Since the friction and air resistance is ignored, we assume the conservation of angular momentum is
satisfied, thus we can simply calculate the angular velocity for the roller coaster to rotate along the axis is

ω =
4L2

md2

so the centripetal acceleration is
aω = ω2R

and the rising velocity along the axis as

valong =
2LH

πmd2
.

Then with the same method in 2.2.3, we define

Gω =
aω
g

We add a correction term to Sexcitement in Equation (7)

∆w = k1 · k4Gω + k1 · k5valong (45)

Then the corrected Sexcitement(new) is written as:

S(new) = S + ∆w = S = k1(4Gx + 5Gy + 3Gz + k2v + k3H + k4Gω + k5valong) (46)

4.2.3 Other Considerations

We could consider the air drag more precisely and apply a much more precise and convincing method
to define safety and exciting.

4.3 Advantages
Firstly, our model is easy to formulate and calculate. We utilize some basic functions to represent the

complex trajectory of the track. We also focus on analysing the state of motion of the roller coaster and
write equations of motion.

Moreover, we build our model under many reasonable assumptions. We take into consideration of many
important factors. Since the roller coaster run in a high speed, the factor of the quadratic drag should be
considered. We assume the roller coaster to be a particle since we do not need to analyse the rotation of it.
We also assume the friction between the car and the track is small, which could make the car to run much
further. We set some reasonable initial conditions to increase the sense of excitement and

Thirdly, the model of the roller coaster track is very humanized. There are no sharp turns in the track of
the roller coaster, which can avoid the huge acceleration caused by simplification. At the same time, it can
make the roller coaster running more smoothly, and passengers can have a better experience.

Last but not least, we make a clear definition of the safety and excitement, which make it easier for us
to analyse and fulfil our goal of constructing a roller coaster that is safe and exciting.

Above all, we tried our best to construct an analysable model of roller coaster and analyse its concrete
motion in the whole process. We have searched many information and material to support our assumption,
and apply Euler Method to find the approximate solution of velocity and the three kinds of accelerations at
any instant time. Although the process is difficult, but we finally succeed to construct model and obtain all
the results.
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A Plotting Figures

(a) Gx horicircle (b) Gx midcircle

(c) Gx downcircle (d) Gx orbit

(e) Gx upcicle

Figure A.1: Gx for the five circular track
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(a) Gy horicircle (b) Gy midcircle

(c) Gz downcircle (d) Gz orbit

(e) Gz upcicle

Figure A.2: Gy or Gz for the five circular track
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(a) S downcircle (b) S horicircle

(c) S midcircle (d) S orbit

(e) S upcircle

Figure A.3: Sexcitement for the five circular track
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B MATLAB Codes
11

1 %E u l e r Method f o r downward c a n t
2 f u n c t i o n [ xn , vn , an , t n ] = c a n t ( x0 , v0 , a0 , t 0 )
3 a1 = −0.00037∗v0 ˆ 2 + 9 ;
4 v1 = v0 + a1 ∗0 . 0 0 0 1 ;
5 x1 = x0 + v1 ∗0 . 0 0 0 1 ;
6 t 1 = t 0 + 0 . 0 0 0 1 ;
7 i f x1<31.0583
8 [ xn , vn , an , t n ]= c a n t ( x1 , v1 , a1 , t 1 ) ;
9 e l s e

10 xn = x0 ; vn = v0 ;
11 an = a0 ; t n = t 0 ;
12 end

1 %E u l e r Method f o r h o r i z o n t a l t r a c k
2 f u n c t i o n [ xn , vn , an , t n ] = h o r i z o n t a l ( x0 , v0 , a0 , t 0 )
3 a1 = −0.00037∗v0 ˆ2 −0 .0098;
4 v1 = v0 + a1 ∗0 . 0 0 0 1 ;
5 x1 = x0 + v1 ∗0 . 0 0 0 1 ;
6 t 1 = t 0 + 0 . 0 0 0 1 ;
7 i f x1<10
8 p l o t v ( t1 , v1 ) ;
9 [ xn , vn , an , t n ]= h o r i z o n t a l ( x1 , v1 , a1 , t 1 ) ;

10 e l s e
11 xn = x0 ;
12 vn = v0 ;
13 an = a0 ;
14 t n = t 0 ;
15 end

1 %E u l e r Method f o r upward c i r c l e t r a c k
2 f u n c t i o n [ xn , vn , an , bn , t n ] = u p c i r c l e ( x0 , v0 , a0 , b0 , t 0 )
3 a1 = −0.001∗( v0 ˆ 2 / 8 + 9 . 8∗ cos ( x0 ) ) − 0 .00037∗ v0 ˆ2 − 9 . 8∗ s i n ( x0 ) ;
4 v1 = v0 + 0 .0001∗ a1 ;
5 x1 = x0 + v1 / 8 ∗ 0 . 0 0 0 1 ;
6 b1 = v1 ˆ 2 / 8 ;
7 t 1 = t 0 + 0 . 0 0 0 1 ;
8 i f x1<p i
9 s = 4∗ a1 / 9 . 8 + 4∗ b1 / 9 . 8 + 0 . 0 5 ∗ v1 +0.1∗8∗(1− cos ( x1 ) ) ;

10 p l o t ( t1 , s , ’ . ’ ) ;
11 ho ld on ;
12 [ xn , vn , an , bn , t n ] = u p c i r c l e ( x1 , v1 , a1 , b1 , t 1 ) ;
13 e l s e
14 xn = x0 ;
15 vn = v0 ;
16 an = a0 ;
17 bn = b0 ;
18 t n = t 0 ;
19 end

11We apply recursion to the Matlab Code. The function require initial conditions of the car as the input and can output the
emotion condition at any instant of time.
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1 %E u l e r Method f o r midd le c i r c l e t r a c k
2 f u n c t i o n [ xn , vn , an , bn , t n ] = m i d c i r c l e ( x0 , v0 , a0 , b0 , t 0 )
3 a1 = −0.001∗( v0 ˆ 2 / 8 ) − 0 .00037∗ v0 ˆ 2 ;
4 %assume s u r f a c e o r b i t s b u t s e l f −r o t a t i o n i g n o r e d
5 v1 = v0 + 0 .0001∗ a1 ;
6 x1 = x0 + v1 / 8 ∗ 0 . 0 0 0 1 ;
7 b1 = v1 ˆ 2 / 8 ;
8 t 1 = t 0 + 0 . 0 0 0 1 ;
9 i f x1<p i

10 s = 4∗ a1 / 9 . 8 + 4∗ b1 / 9 . 8 + 0 . 0 5 ∗ v1 + 1 . 6 ;
11 p l o t ( t1 , s , ’ . ’ ) ; ho ld on ;
12 p lo tG ( t1 , b1 ) ;
13 [ xn , vn , an , bn , t n ] = m i d c i r c l e ( x1 , v1 , a1 , b1 , t 1 ) ;
14 e l s e
15 xn = x0 ;
16 vn = v0 ;
17 an = a0 ;
18 bn = b0 ;
19 t n = t 0 ;
20 end

1 %E u l e r Method f o r downward c i r c l e t r a c k
2 f u n c t i o n [ xn , vn , an , bn , t n ]= d o w n c i r c l e ( x0 , v0 , a0 , b0 , t 0 )
3 a1 = −0.001∗( v0 ˆ 2 / 8 + 9 . 8∗ cos ( x0+ p i ) ) − 0 .00037∗ v0 ˆ2 − 9 . 8∗ s i n ( x0+ p i ) ;
4 v1 = v0 + 0 .0001∗ a1 ;
5 x1 = x0 + v1 / 8 ∗ 0 . 0 0 0 1 ;
6 b1 = v1 ˆ 2 / 8 ;
7 t 1 = t 0 + 0 . 0 0 0 1 ;
8 i f x1<p i
9 s = 4∗ a1 / 9 . 8 + 4∗ b1 / 9 . 8 + 0 . 0 5 ∗ v1 +0.1∗8∗(1− cos ( x1+ p i ) ) ;

10 p l o t ( t1 , s , ’ . ’ ) ; ho ld on ;
11 p lo tG ( t1 , b1 ) ;
12 [ xn , vn , an , bn , t n ] = d o w n c i r c l e ( x1 , v1 , a1 , b1 , t 1 ) ;
13 e l s e
14 xn = x0 ;
15 vn = v0 ;
16 an = a0 ;
17 bn = b0 ;
18 t n = t 0 ;
19 end

1 %E u l e r Method f o r c l i m b i n g t r a c k
2 f u n c t i o n [ xn , vn , an , t n ] = c l imb ( x0 , v0 , a0 , t 0 )
3 a1 = −0.00037∗v0 ˆ2 −8 .714;
4 v1 = v0 + a1 ∗0 . 0 0 1 ;
5 x1 = x0 + v1 ∗0 . 0 0 1 ;
6 t 1 = t 0 + 0 . 0 0 1 ;
7 i f x1<25
8 [ xn , vn , an , t n ]= c l imb ( x1 , v1 , a1 , t 1 ) ;
9 e l s e

10 xn = x0 ; vn = v0 ;
11 an = a0 ; t n = t 0 ;
12 end
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1 %E u l e r Method f o r c l i m b i n g t r a c k
2 f u n c t i o n [ xn , vn , an , bn , t n ] = o r b i t ( x0 , v0 , a0 , b0 , t 0 )
3 a1 = −0.001∗( v0 ˆ 2 / 8 + 5 / 2 6 ˆ 0 . 5 ∗ 9 . 8 ∗ cos ( x0+ p i ) ) −5 / 2 6 ˆ 0 . 5∗9 . 8∗ s i n ( x0+ p i ) −0.00037∗ v0 ˆ 2 ;
4 v1 = v0 + a1 ∗0 . 0 0 1 ;
5 x1 = x0 + v1 / 8 ∗ 0 . 0 0 1 ;
6 b1 = v1 ˆ 2 / 8 ;
7 t 1 = t 0 + 0 . 0 0 1 ;
8

9 i f x1<4∗p i
10 s = 4∗ a1 / 9 . 8 + 5∗ b1 / 9 . 8 + 0 . 0 5 ∗ v1 +0.1∗8∗(1− cos ( x1+ p i ) ) ;
11 p l o t ( t1 , s , ’ . ’ ) ;
12 ho ld on ;
13 %plo tG ( t1 , b1 ) ;
14 [ xn , vn , an , bn , t n ]= o r b i t ( x1 , v1 , a1 , b1 , t 1 ) ;
15 e l s e
16 xn = x0 ;
17 vn = v0 ;
18 an = a0 ;
19 bn = b0 ;
20 t n = t 0 ;
21 end

1 %F u n c t i o n t o P l o t G
2 f u n c t i o n p lo tG ( t , a )
3 p l o t ( t , a / 9 . 8 , ’ . ’ ) ;
4 ho ld on ;
5 end

1 %F u n c t i o n t o P l o t G
2 f u n c t i o n p l o t v ( t , v )
3 p l o t ( t , v , ’ . ’ ) ;
4 ho ld on ;
5 end


