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1. Introduction

A translation surface is a union of polygons with pairs of parallel edges
identified by translation. By cutting and pasting a translation surface with
identified edges, some surfaces will have a shape of a convex polygon, and
such surfaces are said to have a convex presentation.

While whether or not a translation surface has a strict convex presentation
is studied thoroughly in genus 2[5], and a test for strict convex presentation
of translation surfaces in general is raised by Samuel Lelièvre and Barak
Weiss[5], the question is yet unsolved for translation surfaces in genus 3 or
higher genus.

One application of translation surfaces is related to rational billiards[8]. A
rational polygon is a polygon whose angles are rational multiples of π. The
rational billiards studies the straight line flow in rational polygons, where the
straight line is reflected when hitting the boundary of the polygon. Instead
of considering reflection of straight lines, we may duplicate the polygon ”in
mirror image on the other side of edge, and let the flow continue straight
through the wall into another copy of the polygon”[8]. It turns out that
after doing a finite times of mirroring, a translation surface will be formed
from the original rational polygon[8].

The application in rational billiards is also connected to solving the il-
lumination problem, where you want to find a place to put only one point
light source and light all areas inside a shape. If the shape is a rational
polygon and the translation surface formed from the previous process has a
strictly convex presentation, then there must be some place to put a point
light source lighting all areas inside[2].

The convex presentations of translation surfaces play an important role in
areas of pure math such as complex analysis, which will not be introduced
here due to the lack of knowledge.

Our main goal in this paper is trying to implement a general Lelièvre-
Weiss Convexity Test for strictly convex presentations of square-tiled trans-
lation surfaces (i.e., surfaces formed by unit squares) on the computer with
the help of the flatsurf package in SageMath. We also manage to enumer-
ate groups of translation surfaces in genus 2 for testing our implementation,
which are studied by Samuel Lelièvre and Barak Weiss[5]. In the future, the
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Lelièvre-Weiss Convexity Test implemented may be used to study transla-
tion surfaces in higher genus.

2. Background

Definition 2.1 (Translation Surface [5]). A translation surface is defined
as a union of polygons with pairs of parallel edges identified by translation,
up to cut and paste equivalence, which means the new surface by cutting
the surface into 2 pieces along a line and gluing a pair of edges together is
the same surface as the original one.

Some translation surfaces have a shape of a convex polygon up to cut and
paste, while others do not. Translation surfaces which can be presented as
a convex polygon are said to have a convex presentation. Figure 1 shows
an example of translation surfaces with a convex presentation by cutting
and pasting.

Figure 1. A translation surface with a convex presentation [5]

As shown in Figure 2, for each point p along the boundary of a translation
surface, if you start at a point q within a small distance from p and go around
p, you will finally get back to q after rotating around p for some angle α
(following the arrows 1, 2, . . . , 8). We say α is the overall angle of identifying
all sides for the point p. In Figure 2, α = 6π.

Definition 2.2 (Cone Point and Cone Angle [9, Definition 1.5]). A cone
point, aka singularity p0, on a translation surface is a point whose overall
angle of identifying all sides is 2(k + 1)π for some integer k > 0. The
singularity at p0 is said to have cone angle 2(k + 1)π. For example, in
Figure 2, p is a cone point with cone angle 6π. Any interior point and
any point on a edge of a translation surface has angle 2π with the possible
exception of the corners[1].

Gluing all pairs of identified edges of a translation surface together, we
would obtain a topological surface, which has certain number of holes, i.e.,
genus.
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Figure 2. Overall angle of identifying all sides for point p.

Definition 2.3 (Genus [3]). Genus is a topologically invariant property
of a surface defined as the largest number of nonintersecting simple closed
curves that can be drawn on the surface without separating it. Roughly
speaking, it is the number of holes in a surface.

Theorem 2.4. (Gauβ-Bonnet formula [6, Proposition 1.14]) Let x be a
finite translation surface of genus g that has n cone angles of 2(ki + 1)π , i
= 1, . . . , n. Then it holds

2g − 2 =
n∑

i=1

ki

Translation surfaces are usually grouped into strata according to the num-
ber of sigularites as well as their cone angles.

Definition 2.5 (Stratum). A stratum is a set of all translation surfaces
having the same set of cone angles 2(ki + 1)π , i = 1, . . . , n. A stratum is
written as H(k1, k2, ..., kn), where the order of ki doesn’t matter.

According to Theorem 2.4, translation surfaces in a stratum must have
the same genus g. Figure 2 shows a translation surface in H(2), where all
the vertices is a single cone point(i.e., when gluing together, they are the
same point) with cone angle 6π.

Definition 2.6 (Saddle Connection). A point, (i.e. a translation surface)
in a stratum is specified by a finite number of line segments joining singular
points, and such line segments are called saddle connections.

Definition 2.7 (Simple Cylinder[5]). A cylinder on a translation surface
is an isometrically embedded copy of a Euclidean cylinder (R/cZ)×(0, h)
whose boundary is a union of saddle connections. A simple cylinder on a
translation surface is a cylinder with one saddle connection on the top and
bottom.

By fixing a minimum number of oriented line segments, possibly not all
the line segments, we are able to fix the shape of a translation surface.
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Definition 2.8 (Period Coordinates). We can represent a translation sur-
face with vectors representing a minimum number of line segments used to
fix the shape of the translation surface. And the coordinates given in the
procedure is called period coordinates, which allow us to represent linear
transformation of shapes more conveniently.

For example, choosing the left two vertical segments and the up two hor-
izontal segments, the leftmost surface in Figure 3 can be represented as
((0, 1), (0, 1), (1, 0), (1, 0)) ∈ R8 = dim(H(2)).

Based on the period coordinates, how GL(2,R) acts on points in a stra-

tum can be analyzed. For instance, let U =

(
1 1
0 1

)
, and let x be the

leftmost translation surface in Figure 3, Ux, which is the surface obtained
after shearing x with U , is shown on the right.

Figure 3. U acts on a point in H(2) [4]

GL(2,R) action is found to be a strong tool helping study convex presen-
tations.

Theorem 2.9 ([7]). The property of having no strictly convex presentations
is GL(2,R)-invariant.

Hence, GL(2,R) action preserves the property of having strict convex
presentations. At the meantime, the method proposed by Samuel Lelièvre
and Barak Weiss to check whether or not a translation surface has a strict
convex presentation is as follows.

Theorem 2.10 (Lelievre-Weiss Convexity Test[5]). A translation surface
has a strict convex presentation if and only if it contains a simple cylinder
C such that:

(1) C is horizontal up to shearing.
(2) C also contains a vertical saddle connection after shearing.
(3) In H(2g − 2), there are 2g − 1 southward pointing vectors from a

cone point, each must intersect the top of C.
(4) The last step decomposes the top of C into 2g − 1 many segments,

which will return to the bottom of C in reverse order following the
southward direction.

(5) Finally, connecting the cone points above C, a convex polygon will
be gained.
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Manually processing the test for a translation surface would be time con-
suming. If we manage to implement the convexity test as well as generating
translation surfaces in a given stratum with the computer, it will be helpful
for us to study the convex presentations of translation surfaces.

For computational achievable, we restrict our study on square-tiled sur-
faces (origami) with SL(2,Z) action.

Definition 2.11 (n-Origami). An n-Origami is a translation surface con-
sisting of n unit squares.

Any n-Origami can be represented using a right permutation and an up
permutation, which describes the order of gluing squares together.

Definition 2.12 (Right and Up Permutation). Label n squares in an origami
as 1, 2, . . . , n. Since only one square can be glued on the right of a given
square, hence if we write out the squares on the right of 1, 2, . . . , n ac-
cordingly, we would gain a permutation of n, which is defined as the right
permutation. Besides, only one square can be glued on the top of a given
square and if we write out the squares on the top of 1, 2, . . . , n accord-
ingly, we would also gain a permutation of n, which is defined as the top
permutation.

Theoretically, since the first step of test in Theorem 2.10 is equivalent
that some surface in the GL(2,R) orbit of the given surface will contain a
horizontal simple cylinder, hence we would need to check infinitely many
directions for shearing to see whether or not there would be a horizontal
simple cylinder. Luckily, for any origami, without proof we state that:

Theorem 2.13. A surface in the GL(2,R) orbit of an origami contains a
horizontal simple cylinder if and only if a surface in the SL(2,Z) orbit of
the origami contains a horizontal simple cylinder.

3. Preliminaries

3.1. Enumeration of n-origami in H(2). The first problem is to enu-
merate origamis in a given stratum. We tackle the problem with origami in
H(2) as a start.

In H(2), for every square-tiled surface, there are some integer values of
hi, ti, and ui, so that the surface is equivalent to the surface in Figure 4 up
to cut and paste, where hi, ui, ti are integers and u1 < u2, 0 <= t1 < u1,
0 <= t2 < u2.

Let Sn denote the collection of all square-tiled surfaces as in the figure
where h1u1 + h2u2 = n.

For a given integer n, if we fix the group of number h1, u1, h2, u2, then
the varying of t1 and t2 describes how the two cylinders are sheared from a
rectangle. However, to enumerate surfaces, instead of considering shearing,
we can consider the locations of singularities instead.
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Figure 4. A square-tiled translation surface in H(2)[5]

Figure 5. Enumerate shearing by enumeration positions of singularities

As shown in Figure 5, by cutting and pasting, any surface in S(n) can be
in the shape of a narrow rectangle on the top of a wide rectangle with their
left sides aligned.

Due to the different shearing, the positions of singularities will vary along
the top and bottom of the translation surface. Fixing the shearing of the
top and bottom cylinder is equivalent to fixing the positions of the singular
points on the top and bottom of the origami.

In conclusion, the algorithm to enumerate all possible square-tiled surfaces
in Sn is as follows:

(1) Enumerate all possible integers (h1, u1, h2, u2) such that h1u1+h2u2 =
n and u1 < u2.

(2) For each group of integers (h1, u1, h2, u2), fix the shape of the square-
tiled surface to be a narrower rectangle on the top of a wider rec-
tangle with their left sides aligned.

(3) Label each square in the surface as 1, 2, 3, . . . , n from left to right,
top to bottom. And fix the inner right and up permutations.

(4) Enumerate all possible positions for cone points to be on the top and
bottom edges of the surface, which fixes the way of gluing cone points
together and thus gives the complete right and up permutations.

(5) For each pair of right and up permutations constructed, create an
origami with the flatsurf package in SageMath, and add it to the set
of S(n).

Then, we can study origamis in H(2) as different groups of n-Origamis.
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3.2. Generating SL(2,Z) Orbits. Given any square-tiled surface x, the
Veech group of x is defined as SL(x) =: {g : g ∈ SL(2,Z), gx = x}. There is
a minimal finite collection {h1, ..., hn} of elements of SL(2,Z), called right
coset, so that SL(2,Z) =

⋃n
i=1 hiSL(x). Then the SL(2,Z) orbit of x is:

SL(2,Z) · x =
⋃n

i=1 hi · x.
By Theorem 2.13, for a square-tiled surface x, if up to shearing by ele-

ments in GL(2,R), it contains a horizontal simple cylinder, one of the surface
in its SL(2,Z) orbit will contain a horizontal simple cylinder. If any such
surfaces in its SL(2,Z) orbit passes steps 2, 3, 4, and 5 of the Lelievre-Weiss
Convexity Test, then we can conclude the original surface as well as all the
surfaces in its SL(2,Z) orbit have a strict convex presentation.

Our first step is to output the SL(2,Z) orbit of a given origami. The
main algorithm is as follows:

(1) Find the left coset of the origami, which is a built-in function in the
flatsurf package in SageMage.

(2) For each element in the left coset, find its inverse matrix. And all
those inverse matrices form the right coset, which is desired.

(3) Let each element in the right coset act on the origami to gain the
orbit.

The main problem to implement the algorithm generating SL(2,Z) orbits
is step 3: implementing the SL(2,Z) action on an origami.

3.3. Implementing SL(2,Z) Action on Origamis. LetR =

(
0 − 1
1 0

)
be the rotation matrix, S =

(
1 1
0 1

)
be the shearing matrix, x be an

origami. Rx and Sx are implemented in the flatsurf package.

Theorem 3.1. The matrices S and R generates SL(2,Z).

With the built-in functions of flatsurf and Theorem 3.1, the problem is
then reduced to factorizing any marix in SL(2,Z) with S and R, after which
we can apply the S and R actions in series to complete the action of the
original matrix. The factorization problem can be solved using the following
result:

(1) If M =

(
a b
c d

)
=

(
1 0
0 1

)
, then we are done.

(2) Else, if a× c+ b× d > 0, let M = S−1M
(3) Else, if a× c+ b× d < 0, let M = R−1M

It turns out for any M in SL(2,Z), the above process will always make
M become an identity matrix after finite steps, giving AnM = I2, where An

is a series of S−1 and R−1 multiplying together. Then M = A−1n is a series
of S and R multiplying together.
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3.4. Equivalent Lelièvre-Weiss Convexity Test. According to Theo-
rem 2.10, in step 2 of the Lelièvre-Weiss Convexity Test, the simple horizon-
tal cylinder is sheared to maintain horizontal while having a vertical saddle
connection. And steps 3, 4, and 5 are based on finishing step 2.

However, the matrix used to shear in step 2 may be in SL(2,R) instead
of SL(2,Z), which will give computation difficulty.

Noticing that the effect of shearing on step 3 and 4 is that after shearing:
in step 3, the vectors will point directly southward instead of having a non-
zero angle with the vertical direction; in step 4, the intervals on the top
of the cylinder will return to the bottom of the cylinder in the southward
direction.

Let the shearing matrix applied be H =

(
1 h
0 1

)
, and the original

direction of vectors as well as return maps be d =

(
d1
d2

)
. Since Hd =(

0
−1

)
, which is in the southward direction, hence d =

(
h
−1

)
Then, after we know which shearing matrices can be applied to shear the

cylinder to have a vertical saddle connection, we can process step 3 and 4
following the according direction instead. The method to find all shearing
matrices making a simple cylinder to have a vertical saddle connection is
discussed in the next section.

Besides, for step 5, whether shearing the origami or not will not affect the
convexity of the shape above the cylinder.

3.5. Finding All Shearing Matrices Giving a Vertical Saddle Con-
nection of a Simple Cylinder. As shown in Figure 6, if a horizontal
simple cylinder C of height y and width x in a translation surface already
contains a vertical saddle connection, then after shearing the translation

surface by the matrix

(
1 x

y

0 1

)
, the horizontal simple cylinder C in the

new surface would still contain a vertical saddle connection.
The two surfaces may not pass the last few steps of the Lelièvre-Weiss

Convexity Test at the same time, which means, as long as the two surfaces
are not the same surface, we would need to test both of them with the last
few steps of the Lelièvre-Weiss Convexity Test.

Theorem 3.2. Let M =

(
1 x

y

0 1

)
, where x, y are integers, and t be an

origami. There exists a finite k ∈ N such that Mkt = t, which is equivalent
to Mk being the Veech group of t.

The proposed algorithm to find all possible shearing matrices making a
horizontal simple cylinder have a vertical saddle connection is as follows:
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Figure 6. Shearing while maintain a vertical saddle connection

(1) Let the list of all possible shearing matrices be S = [ ]. Let t be the
translation surface containing a horizontal simple cylinder C with
height y and with x.

(2) Find any shearing matrix S0 that will make the C have a vertical
saddle connection. Append S0 into S.

(3) let M =

(
1 x

y

0 1

)
.

(4) For k = 0, 1, 2, 3, . . . , if Mk is in the Veech group of S0t, then stop.
Otherwise, append MkS0 into S and keep increasing k.

(5) Output S.

3.6. Implementing Lelièvre-Weiss Convexity Test. Now we are ready
to implement the equivalent Lelièvre-Weiss Convexity Test for surfaces in
H(2g − 2).

The complete algorithm is as follows:

(1) For a given origami O, find its SL(2,Z) orbit.
(2) For each origami in O′s orbit, find those with horizontal simple cylin-

ders and all of their horizontal simple cylinders. If no such origami
exist, output False.

(3) For each surface with simple horizontal cylinders and for each simple
cylinder it contains, find all the possible directions for vectors to from
singularities.

(4) For each possible direction, check whether there are 2g − 1 arrows
intersecting with the top of the cylinder. If no such directions exist,
output False.

(5) For each direction having 2g − 1 arrows intersecting with the top of
the cylinder, check whether the return map of gained intervals on
the top of the cylinder to the bottom of the cylinder is in reverse
order. If no such return map exist, output False.

(6) For each origami in O′s orbit having a simple cylinder C passing
all the above steps, check whether all cone points above C form a
convex polygon. If no such convex polygon exist, output False.
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(7) Output True.

4. Results

The Lelièvre-Weiss Convexity Test implemented is tested with surfaces in
genus 2, which are studied by Samuel Lelièvre and Barak Weiss [5].

Samuel Lelièvre and Barak Weiss gives all 7 types of non-strictly-convex
origamis in H(2). These types are classified as:

(1) D = 9, a representative of which is X(0, 2, 1, 1)
(2) D = 16, a representative of which is X(0, 3, 1, 1)
(3) D = 36, a representative of which is X(1, 4, 2, 2)
(4) (D, ε) = (25, 0), a representative of which is X(0, 6, 1, 3)
(5) (D, ε) = (25, 1), a representative of which is X(0, 6, 1, 2)
(6) (D, ε) = (49, 1), a representative of which is X(0, 12, 1, 4)
(7) (D, ε) = (81, 1), a representative of which is X(0, 20, 1, 4)

Where X(a, b, c, λ) denotes the translation as shown in Figure 7 surface[5].

Figure 7. X(a, b, c, λ)[5]

Our implementation gives correct results for all typical testing surfaces of
above types.

Besides, our implementation gives correct results for typical surfaces with
a convex presentation, such as the octagon in Figure 8.

Figure 8. An oracle constructed by unit squares
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