
Monocular Depth Estimation Based on Convolutional Neural Networks

Dawei Wang*
University of Michigan
wdwdawei@umich.edu

Ruiyi Wang*
University of Michigan

ruiyiw@umich.edu

Siyi Chen*
University of Michigan

siyich@umich.edu

Yiyang Qiu*
University of Michigan
yiyangq@umich.edu

1. Introduction
1.1. Background

Depth estimation is a crucial task designated to recon-
struct the spatial structure of a scene, recover 3D scene
geometry and obtain depth information from 2D images.
Depth estimation is fundamental to many real-life applica-
tions, aiding tasks such as navigation and motion planning
of robots, 3D scene reconstruction, and augmented reality.

There are prior works on depth estimation based on
stereo images or motion, where local correspondence suf-
fices for estimation given well-studied methods[10]. How-
ever, obtaining depth information from a single RGB image
is less straightforward than stereo images. In many cases
such as robotics and autonomous driving, only monocular
images are available. With the advancements in deep learn-
ing and convolutional neural networks, it is possible to ef-
fectively estimate depth of a scene using only single RGB
images.

1.2. Related work

1.2.1 Monocular Depth Estimation

Monocular depth estimation aims to predict depth of pixels
from a single 2D image. Early works proposed approaches
using multi-scale information and directly regressing over
pixels for depth estimation[3]. Recently, with the use of
Deep Convolutional Neural Networks (abbr. as DCNNs
hereafter), some methods were able to estimate the contin-
uous depth map, which is formulated as a continuous con-
ditional random field (CRF) learning problem[8, 2]. To im-
prove such model, Xu et al. added a structured attention
model which can robustly fuse features derived from multi-
ple scales[14]. Another line of research aims at taking ad-
vantage of DCNNs focused on applying standard DCNNs
designed for image classification as feature extractors, and
upsampling effectively to restore resolution of the produced
dense maps. ResNet-50[6] and denseNet-169[1] were used

as pre-trained model for depth estimation task and achieved
high performance with fewer computational power. Deviat-
ing from prior approaches for monocular depth estimation,
Fu et al. proposed a new method reconstructing the prob-
lem as an ordinal regression task rather than a continuous
depth mapping problem. In this paper, a space-increasing
discretization (SID) is introduced, which increases the ro-
bustness by allowing the prediction of larger depth value to
accept larger error instead of over-strengthening the effect
of large values[4].

Research on monocular depth estimation that focused
more on real-time inference rather than high quality also
points out a popular direction. In applications involving em-
bedded platform, an efficient and light network architecture
is needed. The work proposed by Wofk et al. achieved
similar accuracy as the prior state-of-the-art models while
reducing the computational complexity by applying a sim-
ple encoder-decoder architecture and pruning the network
further[13].

1.2.2 Transfer Learning

Transfer learning improves model performance and reduces
computational cost by utilizing useful information on a
large scale from a well-defined task and fine-tuning the
model in use. Transfer learning is often expressed through
the use of pre-trained models, among which VGG, ResNet,
Inception V3 and denseNet are popular. As is investigated
in the work proposed by Zamir et al., transfer learning
has achieved high performance in tasks including 3D key-
point detection and Z-buffering, which is closely related
to 3D scene reconstruction[15]. Transfer learning is re-
cently applied in depth estimation using encoder-decoder
structure, where the encoder is initialized using denseNet-
169 pre-trained on ImageNet[1]. Such approach simplifies
the model architecture and reduces the trainable parameters
while outperforming state-of-the-art benchmarks[1].

1

2. Approach
2.1. Architecture

An overview of the architecture of our model is shown
in Figure 1. The input image is first passed through an en-
coder to extract features, which is a backbone model pre-
trained with ImageNet. The learned features are passed to
the decoder, which gradually upsamples the image and fi-
nally outputs the depth prediction for each pixels.

2.1.1 Encoder

Transfer learning is applied on the encoder with all lay-
ers frozen. By transfer learning, we can utilize high-
performance models originally trained for image classifi-
cation and use the models as an expressive feature extrac-
tor. We adapted 2 models: mobile net v2 [9] and squeeze
net [5] as the backbone model and the comparison will be
discussed in section 3. The last classification layer of the
backbone model is removed so the encoder outputs various
features learned from the image.

2.1.2 Decoder

The goal of the decoder is to estimate the depth of the im-
age given the learned features outputted from the encoder.
The decoder is composed of several decoder blocks. Each
block first applies ×2 bilinear upsampling to the input, and
concatenate with the output from the corresponding layer
in the encoder. The merged input is then passed through 2
convolutional layers, each with a filter size of 3, stride size 1
and padding size 1. Finally, we use a leaky Relu activation
to add non-linearity. The leaky Relu is only applied to the
second convolutional layer[1].

The number of decoder blocks depend on the encoder.
For mobile net, there are 4 pooling layers in the encoder so
the decoder is composed of 4 decoder blocks. For squeeze
net, the ender downsamples the image 3 times so there are
3 decoder blocks in the decoder.

2.1.3 Skip Connections

In the encoder, after each downsampling layer, we obtain
lower resolution images and may lose some high resolution
details. During decoding, the model needs to recover these
details from the low resolution inputs. To help recover these
details, we add skip connections from the encoder to the de-
coder. After upsampling in the decoder, the output is con-
catenated with the output from the encoder with the same
spatial size, before passing into convolutional layers.

2.2. Data Augmentation

Two basic data augmentation methods are used, horizon-
tal flipping with a probability of 0.5 and channel swapping

with a probability of 0.5 [1], though the paper applies chan-
nel swapping with a probability of 0.25.

In general, for monocular depth estimation, rotation as
well as many other data augmentation methods do not
improve the prediction results. After experimenting on
encoder-decoder structures, we perform two kinds of ex-
periments on data processing, including normalization and
random gray-scaling.

2.3. Loss function

Standard loss functions for optimization of regression
problems include L2 loss and L1 loss. Apart from the stan-
dard loss functions, other types of loss are studied over the
years, such as loss from optical flow and motion[11], the
reverse Huber loss [7], and so on.

Experiments of different loss functions would be another
interesting topic to study. However, in the paper, we use the
weighted sum of three loss functions as the net loss[1]:

L(y, ŷ) = λLdepth(y, ŷ) + Lgrad(y, ŷ) + LSSIM (y, ŷ).
(1)

Ldepth(y, ŷ) is the point-wise L1 loss between the pre-
dicted and ground truth depth values:

Ldepth (y, ŷ) =
1

n

n∑
p

|yp − ŷp| . (2)

Lgrad(y, ŷ) is the point-wise L1 loss between the gradi-
ent g of the predicted and ground truth depth values:

Lgrad(y, ŷ) =
1

n

n∑
p

|gx (yp, ŷp)|+
∣∣gy (yp, ŷp)

∣∣ . (3)

LSSIM (y, ŷ) is constructed based on the Structural Sim-
ilarity (SSIM), which compares local patterns of pixel
intensities[12]:

LSSIM (y, ŷ) =
1− SSIM(y, ŷ)

2
(4)

where SSIM is defined as:

SSIM(x, y) =
(2µxµy + c1) (2σxy + c2)(

µ2
x + µ2

y + c1
) (
σ2
x + σ2

y + c2
) ,

where µ is the average, σ2 is the variance, σxy is the co-
variance, c1 and c2 are two variables to stabilize the division
with weak denominator[12].

Another raised problem is the large loss values of pixels
with larger depth may cause huge overestimation of deeper
pixels. One solution is to use the inverse depth for calculat-
ing loss functions [11, 1], where the reciprocal of the depth

2

Figure 1. Model Architecture with mobile net as the backbone. The encoder is a pretrained mobile net v2 with the classification layer
removed. The decoder consists of blocks that applies upsampling, concatenating and convolution. Dimensions of the features are given as
#channels × height × width.

is used instead. However, considering the data set used in
this paper is NYU2, which is a collection of indoor scenes
without much significant differences in depth, we decide not
to use the inverse depth as an experiment.

2.4. Training procedure

The model is trained using the NYU2 data set. The data
set is shuffled and then divided into training, validation, and
testing set by a fraction of 79 : 20 : 1.

First, we train the model with three Encoder-Decoder
pairs of different structures as presented in the architecture
section: the Mobile net v2 pair and the Squeeze net pair.
Each model is trained with 7 epochs. The number of epochs
may be experimented with methods like early stopping.

Then based on the evaluation on both the accuracy and
efficiency of the model performance, we choose the Mobile
net v2 to conduct further experiments on data augmentation
methods with a subset of 2000 images. The experiments
include data normalization and random grayscaling.

3. Experiments
3.1. Quantitative evaluation metrics

There are six measures suggested in [1]:

• average relative error (rel):

1

n

n∑
p

|yp − ŷp|
yp

• root mean squared error (rms):√√√√ 1

n

n∑
p

(
yp − ŷp
yp

)2

• average (log10) error:

1

n

∑
| log10(yp)− log10(ŷp)|

• threshold accuracy (δi): % of yp such that
max(

yp

ŷp
,
ŷp

yp
) = δ < thr for thr = 1.25, 1.252, 1.253

Here yp is a pixel in the depth image (ground truth), ŷp is
a pixel in the predicted depth map, and n is the total number
of pixels in an image. In our test, we used all of the six met-
rics to measure one model’s performance against the other.
As the names suggest, the first three metrics are ”errors”, so
they are expected to be low for a good model, while for the
other three, as they are “accuracy”, they should be high for
a good model.

3.2. Encoder-Decoder Evaluation

We have implemented two kinds of encoders and their
corresponding decoders: Mobile net v2 and Squeeze net.
Table 1 shows the metrics of these two networks. As we

Rel RMS log10

Mobile net v2 0.228 0.337 0.088
Squeeze net 0.412 0.575 0.151

δ1 δ2 δ3

Mobile net v2 0.661 0.891 0.968
Squeeze net 0.405 0.690 0.867

Table 1. Mobile net v2 versus Squeeze net

can see, for Rel, RMS, and log10 errors, Mobile net v2 has
a much lower value than that of the squeeze net, while for
the threshold accuracy metrics, it has a slightly higher value
than that of the squeeze net. Therefore, we choose Mobile
net v2 as a good encoder for our model.

3.3. Visualization

We have selected several images to be tested by our mod-
els, and visualization of the depth prediction results with the

3

original image as well as ground truth is shown in Figure 2.
The model with mobile net v2 as the encoder performs bet-
ter than the squeeze net as visualized. We also include an
image that ’breaks’ our model as shown in the 4th row. We
can see that the model predicts different depth for the rug
and the floor.

Figure 2. Original image, Mobile net v2, Squeeze, Ground truth

3.4. Data Processing Evaluation

Based on the experiments of encoder and decoder pairs
in 3.2, we decide to use Mobile net v2 and perform two ex-
periments on data processing: normalization and data aug-
mentation by grayscale with probability 0.5. Due to train-
ing resource limitations, the experiments are conducted on
a subset of NYU2 Depth containing 2,000 images.

Normalization The RGB channels of each input image
in the training dataset are normalized to have a mean of
[0.485, 0.456, 0.406] and a standard deviation of [0.229,
0.224, 0.225].

The performance of the model with or without normal-
ization is shown in Table 2, where the Rel, RMS, and log10
errors are generally reduced after normalization and the
threshold accuracy increases by a small amount. In con-
clusion, we state that normalization will reduce the sum
of errors and increase the thresholded accuracy, and thus
is helpful for depth prediction

Grayscale For each input image in the training dataset,
apart from the two basic data augmentation methods, we
perform random grayscaling with a probability of 0.5.

The performance of the model with or without random
grayscaling is shown in Table 2, where the loss, Rel, RMS
and log10 errors are generally reduced after augmentation
with grayscaling and the thresholded accuracy increase by

a small amount. We conclude that random grayscaling is
slightly helpful for our depth prediction.

Rel RMS log10 δ1

Normalization 0.3175 0.4234 0.1380 0.4176
Grayscale 0.3195 0.4204 0.1379 0.3936
None 0.3501 0.4732 0.1474 0.3974

δ2 δ3 Loss

Normalization 0.7306 0.9214 45.3805
Grayscale 0.7364 0.9258 45.5978
None 0.6989 0.8924 47.1242

Table 2. Effect of Normalization and Grayscaling

4. Implementation

We use the NYU2d dataset and split it randomly into
training, validation and testing datasets by shuffling and cre-
ating different csv files with pandas.

The basic data loading, pre-processing and augmentation
methods are implemented based on the class implemented
in GitHub[1]. The other two pre-processing methods ap-
plied are implemented by ourselves: normalization as well
as averaging the RGB values of input images with a proba-
bility of 0.5.

We build our training framework referring the one of
EECS445 project 2. We implement two model structures,
where transfer learning is applied to the encoders and de-
coders are constructed to fit the output sizes of the encoder.
The loss functions is implemented based on [1]. The mod-
els are trained for 7 epochs using the Adam optimizer with
default parameters.

The testing of models with different metrics are imple-
mented by ourselves, and the visualization of predictions
given by the trained models is implemented based on [1].

5. Conclusion

In this project, we implemented a decoder-encoder struc-
ture to predict depth given a monocular input image. We
experimented with mobile net v2 and squeeze net as the
backbone encoder and prepossessing techniques including
normalization and augmentation. We evaluated the models
with 6 quantitative metrics and qualitative analysis. Our re-
sults showed that using mobile net as the encoder improves
performance and normalizing the images and augmentation
lead to small improvements. Due to the limitations of com-
putational resources, we only trained our models for a small
number of epochs. The loss of the model had not plateaued
when we finished training, so more training can still lead to
potential performance improvements.

4

References
[1] Ibraheem Alhashim and Peter Wonka. High quality monoc-

ular depth estimation via transfer learning. 2019.
[2] Amlaan Bhoi. Monocular depth estimation: A survey, 2019.
[3] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map

prediction from a single image using a multi-scale deep net-
work, 2014.

[4] Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Bat-
manghelich, and Dacheng Tao. Deep ordinal regression net-
work for monocular depth estimation. 2018.

[5] Forrest N. Iandola, Song Han, Matthew W. Moskewicz,
Khalid Ashraf, William J. Dally, and Kurt Keutzer.
Squeezenet: Alexnet-level accuracy with 50x fewer parame-
ters and ¡0.5mb model size. 2016.

[6] Iro Laina, Christian Rupprecht, Vasileios Belagiannis, Fed-
erico Tombari, and Nassir Navab. Deeper depth prediction
with fully convolutional residual networks. 2016.

[7] Iro Laina, Christian Rupprecht, Vasileios Belagiannis, Fed-
erico Tombari, and Nassir Navab. Deeper depth prediction
with fully convolutional residual networks. pages 239–248,
2016.

[8] Fayao Liu, Chunhua Shen, Guosheng Lin, and Ian Reid.
Learning depth from single monocular images using deep
convolutional neural fields. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 38(10):2024–2039, Oct
2016.

[9] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. 2019.

[10] D. Scharstein, R. Szeliski, and R. Zabih. A taxonomy and
evaluation of dense two-frame stereo correspondence algo-
rithms. In Proceedings IEEE Workshop on Stereo and Multi-
Baseline Vision (SMBV 2001), pages 131–140, 2001.

[11] Benjamin Ummenhofer, Huizhong Zhou, Jonas Uhrig, Niko-
laus Mayer, Eddy Ilg, Alexey Dosovitskiy, and Thomas
Brox. Demon: Depth and motion network for learning
monocular stereo. 2017 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), Jul 2017.

[12] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli.
Image quality assessment: from error visibility to struc-
tural similarity. IEEE Transactions on Image Processing,
13(4):600–612, 2004.

[13] Diana Wofk, Fangchang Ma, Tien-Ju Yang, Sertac Karaman,
and Vivienne Sze. Fastdepth: Fast monocular depth estima-
tion on embedded systems. 2019.

[14] Dan Xu, Wei Wang, Hao Tang, Hong Liu, Nicu Sebe, and
Elisa Ricci. Structured attention guided convolutional neural
fields for monocular depth estimation, 2018.

[15] Amir Zamir, Alexander Sax, William Shen, Leonidas
Guibas, Jitendra Malik, and Silvio Savarese. Taskonomy:
Disentangling task transfer learning. 2018.

5

